
File name
Commit message
Commit date
File name
Commit message
Commit date
from AttentiveRNN import AttentiveRNN
from Autoencoder import AutoEncoder
from torch import nn
class Generator(nn.Module):
def __init__(self, repetition, blocks=3, layers=1, input_ch=3, out_ch=32, kernel_size=None, stride=1, padding=1, groups=1,
dilation=1):
super(Generator, self).__init__()
if kernel_size is None:
kernel_size = [3, 3]
self.attentiveRNN = AttentiveRNN(repetition,
blocks=blocks, layers=layers, input_ch=input_ch, out_ch=out_ch,
kernel_size=None, stride=stride, padding=padding, groups=groups, dilation=dilation
)
self.autoencoder = AutoEncoder()
self.blocks = blocks
self.layers = layers
self.input_ch = input_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.dilation = dilation
self.sigmoid = nn.Sigmoid()
def forward(self, x):
attentiveRNNresults = self.attentiveRNN(x)
x = self.autoencoder(attentiveRNNresults['x'] * attentiveRNNresults['attention_map_list'][-1])
ret = {
'x' : x,
'attention_maps' : attentiveRNNresults['attention_map_list']
}
return ret
def binary_diff_mask(self, clean, dirty, thresold=0.1):
clean = torch.pow(clean, 2.2)
dirty = torch.pow(dirty, 2.2)
diff = torch.abs(clean - dirty)
diff = torch.sum(diff, dim=1)
# this line is certainly cause problem for quantization
# like, hardcoding it, what could go wrong?
bin_diff = (diff > thresold).to(clean.dtype)
return bin_diff
def loss(self, clean, dirty, thresold=0.1):
# check diff if they are working as intended
diff = self.binary_diff_mask(clean, dirty, thresold)
self.attentiveRNN.loss(clean, diff)
self.autoencoder.loss(clean, dirty)
if __name__ == "__main__":
import torch
from torchinfo import summary
torch.set_default_tensor_type(torch.FloatTensor)
generator = Generator(3, blocks=2)
batch_size = 2
summary(generator, input_size=(batch_size, 3, 720,720))