
File name
Commit message
Commit date
File name
Commit message
Commit date

2023-06-23
from AttentiveRNN import AttentiveRNN
from Autoencoder import AutoEncoder
from torch import nn
class Generator(nn.Module):
def __init__(self, repetition, blocks=3, layers=1, input_ch=3, out_ch=32, kernel_size=None, stride=1, padding=1, groups=1,
dilation=1):
super(Generator, self).__init__()
if kernel_size is None:
kernel_size = [3, 3]
self.attentiveRNN = AttentiveRNN(repetition,
blocks=blocks, layers=layers, input_ch=input_ch, out_ch=out_ch,
kernel_size=None, stride=stride, padding=padding, groups=groups, dilation=dilation
)
self.autoencoder = AutoEncoder()
self.blocks = blocks
self.layers = layers
self.input_ch = input_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.dilation = dilation
self.sigmoid = nn.Sigmoid()
def forward(self, x):
ret = self.attentiveRNN(x)
x = self.autoencoder(ret['x'] * ret['attention_map_list'][-1])
return x
if __name__ == "__main__":
import torch
from torchinfo import summary
torch.set_default_tensor_type(torch.FloatTensor)
generator = Generator(3, blocks=2)
batch_size = 2
summary(generator, input_size=(batch_size, 3, 720,720))