File name
Commit message
Commit date
bug fix : mismatch in request file fields name causing postprocess_draft.py not reading segmented image
06-03
bug fix : mismatch in request file fields name causing postprocess_draft.py not reading segmented image
06-03
bug fix : mismatch in request file fields name causing postprocess_draft.py not reading segmented image
06-03
bug fix : mismatch in request file fields name causing postprocess_draft.py not reading segmented image
06-03
1. code cleanup of inference_gpu_.py and inference_.py is now inference_cpu_.py 2. streaming_url_updator.py CORS fix 3. working DB INSERT of postprocess_draft.py
05-29
bug fix : mismatch in request file fields name causing postprocess_draft.py not reading segmented image
06-03
File name
Commit message
Commit date
import cv2
import numpy as np
import random
from config_files.yolo_config import CLASS_NAME, CLASS_NUM
from typing import List, Tuple
class Inference:
def __init__(self, onnx_model_path, model_input_shape, classes_txt_file, run_with_cuda):
self.model_path = onnx_model_path
self.model_shape = model_input_shape
self.classes_path = classes_txt_file
self.cuda_enabled = run_with_cuda
self.letter_box_for_square = True
self.model_score_threshold = 0.3
self.model_nms_threshold = 0.6
self.classes = []
self.load_onnx_network()
self.load_classes_from_file()
def sigmoid(self, x):
return 1 / (1 + np.exp(-x))
def run_inference(self, input_image):
model_input = input_image
if self.letter_box_for_square and self.model_shape[0] == self.model_shape[1]:
model_input = self.format_to_square(model_input)
blob = cv2.dnn.blobFromImage(model_input, 1.0 / 255.0, self.model_shape, (0, 0, 0), True, False)
self.net.setInput(blob)
outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
outputs_bbox = outputs[0]
outputs_mask = outputs[1]
detections = self.process_detections(outputs_bbox, model_input)
mask_maps = self.process_mask_output(detections, outputs_mask, model_input.shape)
return detections, mask_maps
def process_detections(self, outputs_bbox, model_input):
# Assuming outputs_bbox is already in the (x, y, w, h, confidence, class_probs...) format
x_factor = model_input.shape[1] / self.model_shape[0]
y_factor = model_input.shape[0] / self.model_shape[1]
class_ids = []
confidences = []
mask_coefficients = []
boxes = []
for detection in outputs_bbox[0].T:
# This segmentation model uses yolact architecture to predict mask
# the output tensor dimension for yolo-v8-seg is B x [X, Y, W, H, C1, C2, ..., P1, ...,P32] * 8400
# where C{n} are confidence score for each class
# and P{n} are coefficient for each proto masks. (32 by default)
scores_classification = detection[4:4+CLASS_NUM]
scores_segmentation = detection[4+CLASS_NUM:]
class_id = np.argmax(scores_classification, axis=0)
confidence = scores_classification[class_id]
thres = self.model_score_threshold
w_thres = 40
h_thres = 40
x, y, w, h = detection[:4]
# if bboxes are too small, it just skips, and it is not a bad idea since we do not need to detect small areas
if w < w_thres or h < h_thres:
continue
if confidence > thres:
left = int((x - 0.5 * w) * x_factor)
top = int((y - 0.5 * h) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
boxes.append([left, top, width, height])
confidences.append(float(confidence))
mask_coefficients.append(scores_segmentation)
class_ids.append(class_id)
confidences = (confidences)
indices = cv2.dnn.NMSBoxes(boxes, confidences, self.model_score_threshold, self.model_nms_threshold)
detections = []
for i in indices:
idx = i
result = {
'class_id': class_ids[i],
'confidence': confidences[i],
'mask_coefficients': np.array(mask_coefficients[i]),
'box': boxes[idx],
'class_name': self.classes[class_ids[i]],
'color': (random.randint(100, 255), random.randint(100, 255), random.randint(100, 255))
}
detections.append(result)
return detections
def process_mask_output(self, detections, proto_masks, image_shape):
if not detections:
return []
batch_size, num_protos, proto_height, proto_width = proto_masks.shape
full_masks = np.zeros((len(detections), image_shape[0], image_shape[1]), dtype=np.float32)
for idx, det in enumerate(detections):
box = det['box']
x1, y1, w, h = self.adjust_box_coordinates(box, (image_shape[0], image_shape[1]))
if w <=1 or h <= 1:
continue
# Get the corresponding mask coefficients for this detection
coeffs = det["mask_coefficients"]
# Compute the linear combination of proto masks
# for now, plural batch operation is not supported, and this is the point where you should start.
# instead of hardcoded proto_masks[0], do some iterative operation.
mask = np.tensordot(coeffs, proto_masks[0], axes=[0, 0]) # Dot product along the number of prototypes
# Resize mask to the bounding box size, using sigmoid to normalize
resized_mask = cv2.resize(mask, (w, h))
resized_mask = self.sigmoid(resized_mask)
# Threshold to create a binary mask
final_mask = (resized_mask > 0.5).astype(np.uint8)
# Place the mask in the corresponding location on a full-sized mask image_binary
full_mask = np.zeros((image_shape[0], image_shape[1]), dtype=np.uint8)
# print("---------")
# print(f"x1 : {x1}, y1 : {y1}, w: {w}, h: {h}")
# print(f"x2: {x2}, y2 : {y2}")
# print(final_mask.shape)
# print(full_mask[y1:y2, x1:x2].shape)
full_mask[y1:y1+h, x1:x1+w] = final_mask
# Combine the mask with the masks of other detections
full_masks[idx] = full_mask
all_mask = full_masks.sum(axis=0)
all_mask = np.clip(all_mask, 0, 1)
# Append a dimension so that cv2 can understand ```all_mask``` argument as an image.
# This is because for this particular application, there is only single class ```water_body```
# However, if that is not the case, you must modify this part.
all_mask = all_mask.reshape((image_shape[0], image_shape[1], 1))
return all_mask.astype(np.uint8)
def adjust_box_coordinates(self, box: List[int], image_shape: Tuple[int, int]) -> Tuple[int, int, int, int]:
"""
Adjusts bounding box coordinates to ensure they lie within image boundaries.
"""
x1, y1, w, h = box
x2, y2 = x1 + w, y1 + h
# Clamp coordinates to image boundaries
x1 = max(0, x1)
y1 = max(0, y1)
x2 = min(image_shape[1], x2)
y2 = min(image_shape[0], y2)
# Recalculate width and height
w = x2 - x1
h = y2 - y1
return x1, y1, w, h
def load_classes_from_file(self):
with open(self.classes_path, 'r') as f:
self.classes = f.read().strip().split('\n')
def load_onnx_network(self):
self.net = cv2.dnn.readNetFromONNX(self.model_path)
if self.cuda_enabled:
print("\nRunning on CUDA")
self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
else:
print("\nRunning on CPU")
self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
def format_to_square(self, source):
col, row = source.shape[1], source.shape[0]
max_side = max(col, row)
result = np.zeros((max_side, max_side, 3), dtype=np.uint8)
result[0:row, 0:col] = source
return result
def overlay_mask(image, mask, color=(0, 255, 0), alpha=0.5):
"""
Overlays a mask onto an image_binary using a specified color and transparency level.
Parameters:
image (np.ndarray): The original image_binary.
mask (np.ndarray): The mask to overlay. Must be the same size as the image_binary.
color (tuple): The color for the mask overlay in BGR format (default is green).
alpha (float): Transparency factor for the mask; 0 is fully transparent, 1 is opaque.
Returns:
np.ndarray: The image_binary with the overlay.
"""
assert alpha <= 1 and 0 <= alpha, (f"Error! invalid alpha value, it must be float, inbetween including 0 to 1, "
f"\n given alpha : {alpha}")
# Ensure the mask is a binary mask
mask = (mask > 0).astype(np.uint8) # Convert mask to binary if not already
# Create an overlay with the same size as the image_binary but only using the mask area
overlay = np.zeros_like(image, dtype=np.uint8)
overlay[mask == 1] = color
# Blend the overlay with the image_binary using the alpha factor
return cv2.addWeighted(src1=overlay, alpha=alpha, src2=image, beta=1 - alpha, gamma=0)
def test():
import time
# Path to your ONNX model and classes text file
model_path = 'yoloseg/weight/best.onnx'
classes_txt_file = 'config_files/yolo_config.txt'
# image_path = 'yoloseg/img3.jpg'
image_path = 'testing.png'
model_input_shape = (640, 640)
inference_engine = Inference(
onnx_model_path=model_path,
model_input_shape=model_input_shape,
classes_txt_file=classes_txt_file,
run_with_cuda=True
)
# Load an image_binary
img = cv2.imread(image_path)
if img is None:
print("Error loading image_binary")
return
img = cv2.resize(img, model_input_shape)
# Run inference
t1 = time.time()
detections, mask_maps = inference_engine.run_inference(img)
t2 = time.time()
print(t2-t1)
# Display results
for detection in detections:
x, y, w, h = detection['box']
class_name = detection['class_name']
confidence = detection['confidence']
cv2.rectangle(img, (x, y), (x+w, y+h), detection['color'], 2)
label = f"{class_name}: {confidence:.2f}"
cv2.putText(img, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, detection['color'], 2)
# Show the image_binary
# cv2.imshow('Detections', img)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# If you also want to display segmentation maps, you would need additional handling here
# Example for displaying first mask if available:
if len(mask_maps) != 0:
seg_image = overlay_mask(img, mask_maps[:,:,0], color=(0, 255, 0), alpha=0.3)
cv2.imshow("segmentation", seg_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
# def test2():
# import time
# import glob
#
# # Path to your ONNX model and classes text file
# model_path = 'yoloseg/weight/best.onnx'
# classes_txt_file = 'config_files/yolo_config.txt'
#
# model_input_shape = (640, 640)
# inference_engine = Inference(
# onnx_model_path=model_path,
# model_input_shape=model_input_shape,
# classes_txt_file=classes_txt_file,
# run_with_cuda=True
# )
#
# image_dir = glob.glob("/home/juni/사진/sample_data/ex1/*.png")
#
# for iteration, image_path in enumerate(image_dir):
# img = cv2.imread(image_path)
# if img is None:
# print("Error loading image_binary")
# return
# img = cv2.resize(img, model_input_shape)
# # Run inference
# t1 = time.time()
# detections, mask_maps = inference_engine.run_inference(img)
# t2 = time.time()
#
# print(t2-t1)
#
# # Display results
# # for detection in detections:
# # x, y, w, h = detection['box']
# # class_name = detection['class_name']
# # confidence = detection['confidence']
# # cv2.rectangle(img, (x, y), (x+w, y+h), detection['color'], 2)
# # label = f"{class_name}: {confidence:.2f}"
# # cv2.putText(img, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, detection['color'], 2)
# #
# if len(mask_maps) > 0 :
# seg_image = overlay_mask(img, mask_maps[0], color=(0, 255, 0), alpha=0.3)
# cv2.imwrite(f"result/{iteration}.png", seg_image)
if __name__ == "__main__":
pass
test()