
File name
Commit message
Commit date
File name
Commit message
Commit date
import pandas as pd
import glob
def extract(text):
# print(text)
return text.split(' ')[2]
files = glob.glob("cleaned/*.csv")
files = sorted(files)
동부동 = ["조교동","망정동","야사동","언하동","신기동"]
중앙동 = ["문내동","문외동","창구동","과전동","오미동","녹전동","도림동","매산동"]
서부동 = ["성내동","화룡동","교촌동","오수동","쌍계동","대전동","서산동"]
남부동 = ["도동","금노동","범어동","작산동","봉동","도남동","본촌동","채신동","괴연동"]
emd_code = pd.read_csv("영천시법정동코드.csv")
emd_code_dict = dict(emd_code.values)
all_month = pd.DataFrame(columns = ["행정동"])
for file in files:
name = file.split(' ')[4] + file.split(' ')[5].split('_')[0]
df = pd.read_csv(file)
categories = ["상권업종대분류명", "상권업종중분류명", "상권업종소분류명", "표준산업분류명"]
ex = df.replace({"고객법정동주소코드": emd_code_dict})
ex.loc[:, "고객법정동주소코드"] = ex.loc[:, "고객법정동주소코드"].apply(extract)
ex.loc[:, "고객법정동주소코드"] = ex.loc[:, "고객법정동주소코드"].replace(동부동, "동부동")
ex.loc[:, "고객법정동주소코드"] = ex.loc[:, "고객법정동주소코드"].replace(중앙동, "중앙동")
ex.loc[:, "고객법정동주소코드"] = ex.loc[:, "고객법정동주소코드"].replace(서부동, "서부동")
ex.loc[:, "고객법정동주소코드"] = ex.loc[:, "고객법정동주소코드"].replace(남부동, "남부동")
num = ex.value_counts("고객법정동주소코드")
out = pd.DataFrame(num, columns=['수']).sort_index().reset_index()
out.to_csv(f"행정동/{file.split('/')[-1].split('.')[0]}_고객행정동주소코드.csv", index=False)
ins = [[None] * 2] * 16
ins = pd.DataFrame(ins)
for i, emd in enumerate(ex.groupby("고객법정동주소코드")):
ins.iloc[i,1] = emd[1].loc[:,"당월고지금액"].sum()
ins.iloc[i,0] = emd[0]
emd[1].to_csv(f"행정동별/{name.split('년')[0]}/{name.split('년')[1]}_{emd[0]}.csv", index=False)
ins.columns = ['행정동', f'{name}금액']
all_month = all_month.merge(ins, on='행정동', how='outer')
all_month.to_csv("월별_행정동별_국민연금_금액.csv", index=False)