
File name
Commit message
Commit date
File name
Commit message
Commit date
import pandas as pd
import os
files = []
for path, subdirs, filess in os.walk("telecom_by_day_emd"):
for name in filess:
files.append(os.path.join(path, name))
del filess
emds = ["금호읍",
"동부동",
"남부동",
"서부동",
"고경면",
"완산동",
"청통면",
"중앙동",
"북안면",
"신녕면",
"대창면",
"임고면",
"화산면",
"화남면",
"자양면",
"화북면",]
emd_dict = {
47230250: "금호읍",
47230510: "동부동",
47230555: "남부동",
47230535: "서부동",
47230380: "고경면",
47230540: "완산동",
47230310: "청통면",
47230520: "중앙동",
47230390: "북안면",
47230320: "신녕면",
47230400: "대창면",
47230370: "임고면",
47230330: "화산면",
47230350: "화남면",
47230360: "자양면",
47230340: "화북면",
}
col_names = ["m10", "m20", "m30", "m40", "m50", "m60", "m70",
"f10", "f20", "f30", "f40", "f50", "f60", "f70",
"admdong_cd", "etl_ymd", "total"]
out_df = pd.DataFrame(index=['2021','2022'], columns=[])
for emd in emds:
emd_files = [x for x in files if emd in x]
yearsum = pd.DataFrame(columns=col_names)
for file in emd_files:
df = pd.read_csv(file).iloc[:,1:]
yearsum = pd.concat([yearsum, df], axis=0)
out_df.loc['2021', emd] = yearsum.loc[:,'total'].iloc[0:365].sum()
out_df.loc['2022', emd] = yearsum.loc[:,'total'].iloc[365:365*2].sum()
out_df.to_csv("2021,2022읍면동별유동인구.csv")