File name
Commit message
Commit date
jlchoi1932 2023-02-09 cbd1386 230209 최정임 노드 모듈 UNIX

frac#

Rational approximation to a floating point number with bounded denominator.

Uses the Mediant Method.

This module also provides an implementation of the continued fraction method as
described by Aberth in "A method for exact computation with rational numbers".
The algorithm is used in SheetJS Libraries to
replicate fraction formats.

Installation#

JS#

With npm:

$ npm install frac

In the browser:

<script src="frac.js"></script>

The script will manipulate module.exports if available . This is not always
desirable. To prevent the behavior, define DO_NOT_EXPORT_FRAC

Python#

From PyPI:

$ pip install frac

Usage#

In all cases, the relevant function takes 3 arguments:

  • x the number we wish to approximate
  • D the maximum denominator
  • mixed if true, return a mixed fraction; if false, improper

The return value is an array of the form [quot, num, den] where quot==0
for improper fractions. quot <= x for mixed fractions, which may lead to some
unexpected results when rendering negative numbers.

JS#

The exported frac function implements the Mediant method.

frac.cont implements the Aberth algorithm

For example:

> // var frac = require('frac'); // uncomment this line if in node
> frac(1.3, 9);              // [  0,  9, 7 ] //  1.3 ~       9/7
> frac(1.3, 9, true);        // [  1,  2, 7 ] //  1.3 ~  1 +  2/7
> frac(-1.3, 9);             // [  0, -9, 7 ] // -1.3 ~      -9/7
> frac(-1.3, 9, true);       // [ -2,  5, 7 ] // -1.3 ~ -2 +  5/7

> frac.cont(1.3, 9);         // [  0,  4, 3 ] //  1.3 ~       4/3
> frac.cont(1.3, 9, true);   // [  1,  1, 3 ] //  1.3 ~  1 +  1/3
> frac.cont(-1.3, 9);        // [  0, -4, 3 ] // -1.3 ~      -4/3
> frac.cont(-1.3, 9, true);  // [ -2,  2, 3 ] // -1.3 ~ -2 +  2/3

Python#

frac.med implements Mediant method.

frac.cont implements Aberth algorithm.

For example:

>>> import frac
>>> frac.med(1.3, 9)         ## [  0,  9, 7 ] ##  1.3 ~       9/7
>>> frac.med(1.3, 9, True)   ## [  1,  2, 7 ] ##  1.3 ~  1 +  2/7
>>> frac.med(-1.3, 9)        ## [  0, -9, 7 ] ## -1.3 ~      -9/7
>>> frac.med(-1.3, 9, True)  ## [ -2,  5, 7 ] ## -1.3 ~ -2 +  5/7

>>> frac.cont(1.3, 9)        ## [  0,  4, 3 ] ##  1.3 ~       4/3
>>> frac.cont(1.3, 9, True)  ## [  1,  1, 3 ] ##  1.3 ~  1 +  1/3
>>> frac.cont(-1.3, 9)       ## [  0, -4, 3 ] ## -1.3 ~      -4/3
>>> frac.cont(-1.3, 9, True) ## [ -2,  2, 3 ] ## -1.3 ~ -2 +  2/3

Testing#

The test TSV baselines in the test_files directory have four columns:

  • Column A contains the raw values
  • Column B format "Up to one digit (1/4)" (denominator = 9)
  • Column C format "Up to two digits (21/25)" (denominator = 99)
  • Column D format "Up to three digits (312/943)" (denominator = 999)

make test will run the node-based tests.

make pytest will run the python tests against the system Python version.

make pypytest will run the python tests against pypy if installed

License#

Please consult the attached LICENSE file for details. All rights not explicitly
granted by the Apache 2.0 License are reserved by the Original Author.

Badges#

Build Status

Build Status

Coverage Status

NPM Downloads

Dependencies Status

ghit.me

Analytics