
File name
Commit message
Commit date
File name
Commit message
Commit date
import networkx as nx
import math
from itertools import tee
from numpy import Inf, Infinity, inf
from database.database import DB
import pandas as pd
from haversine import haversine
import time
import pandas as pd
import os
paths= os.getcwd()
def dist(a, b):
(x1, y1) = a
(x2, y2) = b
return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
def swith_xy(tuples):
x,y=tuples
return (y,x)
def pairwise( iterable ):
"""Returns an iterable access binary tuple
s -> (s0,s1), (s1,s2), (s2, s3), ..."""
a, b = tee( iterable )
next(b, None)
return zip(a, b)
class path_finder():
def __init__(self):
start_time=time.time()
self.db=DB()
self.G=nx.read_gpickle(paths + '\\navigation_model\\OSM_gpickle.gpickle')
print("done")
print(time.time()-start_time)
def get_trip(self,dest1,dest2):
start_time=time.time()
dest1=swith_xy(self.db.db_get_dest(dest1))
dest2=swith_xy(self.db.db_get_dest(dest2))
value=0.0001
start_near_nodes=[]
while start_near_nodes == []:
value=value*10
start_near_nodes=self.db.db_get_near_node(dest1[1],dest1[0],value)
else:
start_near_nodes=self.db.db_get_near_node(dest1[1],dest1[0],value)
nn_start = None
nn_end = None
start_delta = float("inf")
end_delta = float("inf")
for n in start_near_nodes:
s_dist = haversine(dest1, n)
if s_dist < start_delta :
nn_start = n
start_delta = s_dist
value=0.0001
end_near_nodes=[]
while end_near_nodes==[]:
value=value*10
self.db.db_get_near_node(dest2[1],dest2[0],value)
end_near_nodes=self.db.db_get_near_node(dest2[1],dest2[0],value)
for n in end_near_nodes:
e_dist = haversine(dest2, n)
if e_dist < end_delta :
nn_end = n
end_delta = e_dist
path = list(nx.astar_path(self.G,nn_start,nn_end,heuristic=dist,weight='length'))
return path
def get_dest(self, dest1):
dest1=swith_xy(self.db.db_get_address(dest1))
return dest1
db=DB()
df = pd.read_csv('D:\\takensoft\\project2\\경산 길찾기\\경산시_체크.csv',encoding='euc-kr')
li_start=[]
li_dest1=[]
for i in range(len(df)):
try:
print(i)
dest1=df['start'][i]
li_dest1.append(dest1)
dest1=swith_xy(db.db_get_dest(dest1))
value=0.0001
start_near_nodes=[]
while start_near_nodes == []:
value=value*10
start_near_nodes=db.db_get_near_node(dest1[1],dest1[0],value)
nn_start = None
start_delta = float("inf")
for n in start_near_nodes:
s_dist = haversine(dest1, n)
if s_dist < start_delta :
nn_start = n
start_delta = s_dist
li_start.append(nn_start)
except:
continue
df_check=pd.DataFrame({'start':li_dest1,'시작지점':li_start})
df_check.to_csv('test.csv',encoding='euc-kr')
'''
df=pd.read_csv('D:\\takensoft\\project2\\경산 길찾기\\경산시.csv',encoding='euc-kr')
p=path_finder()
li_path=[]
for i in range(len(df)):
try:
if i%100 ==0:
print(i)
df2=pd.DataFrame(li_path)
df2.to_csv(f'D:\\takensoft\\project2\\경산 길찾기\\길찾기 결과{i}.csv',encoding='euc-kr')
li_path=[]
start=df['start'][i]
end=df['end'][i]
li_path.append(p.get_trip(start,end))
except:
continue
li_start_x = []
li_start_y = []
li_end_x = []
li_end_y = []
db=DB()
#df.to_csv('D:\\takensoft\\project2\\경산 길찾기\\길찾기 결과.csv',encoding='euc-kr')
df=pd.read_csv('D:\\takensoft\\project2\\경산 길찾기\\경산시.csv',encoding='euc-kr')
for i in range(len(df)):
li_start_x.append(db.db_get_dest(df['start'][i])[0])
li_start_y.append(db.db_get_dest(df['start'][i])[1])
li_end_x.append(db.db_get_dest(df['end'][i])[0])
li_end_y.append([db.db_get_dest(df['end'][i])[1]])
df2 = pd.DataFrame({'start_point_x':li_start_x,'start_point_y':li_start_y,'end_point_x':li_end_x,'end_point_y':li_end_y})
df2.to_csv('D:\\takensoft\\project2\\경산 길찾기\\출발지도착지좌표.csv',encoding='euc-kr')
'''