import time import cv2 import numpy as np import random import onnxruntime as ort from config_files.yolo_config import CLASS_NUM from typing import List, Tuple class Inference: def __init__(self, onnx_model_path, model_input_shape, classes_txt_file, run_with_cuda): self.model_path = onnx_model_path self.model_shape = model_input_shape self.classes_path = classes_txt_file self.cuda_enabled = run_with_cuda self.letter_box_for_square = True self.model_score_threshold = 0.3 self.model_nms_threshold = 0.6 self.classes = [] self.session = None self.load_onnx_network() self.load_classes_from_file() def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def run_inference(self, input_image): model_input = input_image # print(input_image) if self.letter_box_for_square and self.model_shape[0] == self.model_shape[1]: model_input = self.format_to_square(model_input) blob = cv2.dnn.blobFromImage(model_input, 1.0 / 255.0, self.model_shape, (0, 0, 0), True, False) # Prepare input data as a dictionary inputs = {self.session.get_inputs()[0].name: blob} # Run model outputs = self.session.run(None, inputs) outputs_bbox = outputs[0] outputs_mask = outputs[1] detections = self.process_detections(outputs_bbox, model_input) mask_maps = self.process_mask_output(detections, outputs_mask, model_input.shape) return detections, mask_maps def load_onnx_network(self): # Set up the ONNX Runtime session with appropriate device settings try: if self.cuda_enabled: providers = [('CUDAExecutionProvider', {'device_id': 0})] else: providers = ['CPUExecutionProvider'] self.session = ort.InferenceSession(self.model_path, providers=providers) print(f"Running on {'CUDA' if self.cuda_enabled else 'CPU'}") print(f"Model loaded successfully. Input name: {self.session.get_inputs()[0].name}") except Exception as e: print(f"Failed to load the ONNX model: {e}") self.session = None def load_classes_from_file(self): with open(self.classes_path, 'r') as f: self.classes = f.read().strip().split('\n') def format_to_square(self, source): col, row = source.shape[1], source.shape[0] max_side = max(col, row) result = np.zeros((max_side, max_side, 3), dtype=np.uint8) result[0:row, 0:col] = source return result def process_detections(self, outputs_bbox, model_input): # Assuming outputs_bbox is already in the (x, y, w, h, confidence, class_probs...) format x_factor = model_input.shape[1] / self.model_shape[0] y_factor = model_input.shape[0] / self.model_shape[1] t1 = time.time() # Assuming outputs_bbox is an array with shape (N, 4+CLASS_NUM+32) where N is the number of detections # Example outputs_bbox.shape -> (batch_size, 4+CLASS_NUM+32, 8400) # Extract basic bbox coordinates and scores x, y, w, h = outputs_bbox[:, 0], outputs_bbox[:, 1], outputs_bbox[:, 2], outputs_bbox[:, 3] scores = outputs_bbox[:, 4:4 + CLASS_NUM] # Calculate confidences and class IDs confidences = np.max(scores, axis=1) class_ids = np.argmax(scores, axis=1) # Filter out small boxes min_width, min_height = 20, 20 valid_size = (w >= min_width) & (h >= min_height) # Apply confidence threshold valid_confidence = (confidences > self.model_score_threshold) # Combine all conditions valid_detections = valid_size & valid_confidence # proto_mask_score scores_segmentation = outputs_bbox[:, 4 + CLASS_NUM:] # Filter arrays based on valid detections filtered_x = x[valid_detections] filtered_y = y[valid_detections] filtered_w = w[valid_detections] filtered_h = h[valid_detections] filtered_confidences = confidences[valid_detections] filtered_class_ids = class_ids[valid_detections] filtered_mask_coefficient = np.transpose(scores_segmentation, (2,0,1))[valid_detections.T] # Calculate adjusted box coordinates left = (filtered_x - 0.5 * filtered_w) * x_factor top = (filtered_y - 0.5 * filtered_h) * y_factor width = filtered_w * x_factor height = filtered_h * y_factor # Prepare final arrays boxes = np.vstack([left, top, width, height]).T # Change it into int for mask operation boxes = boxes.astype(int) boxes = boxes.tolist() filtered_confidences = filtered_confidences.tolist() filtered_class_ids = filtered_class_ids.tolist() if not len(boxes) <= 0 : indices = cv2.dnn.NMSBoxes(boxes, filtered_confidences, self.model_score_threshold, self.model_nms_threshold) else: indices = [] detections = [] for i in indices: idx = i result = { 'class_id': filtered_class_ids[i], 'confidence': filtered_confidences[i], 'mask_coefficients': np.array(filtered_mask_coefficient[i]), 'box': boxes[idx], 'class_name': self.classes[filtered_class_ids[i]], 'color': (random.randint(100, 255), random.randint(100, 255), random.randint(100, 255)) } detections.append(result) return detections def process_mask_output(self, detections, proto_masks, image_shape): if not detections: return [] batch_size, num_protos, proto_height, proto_width = proto_masks.shape full_masks = np.zeros((len(detections), image_shape[0], image_shape[1]), dtype=np.float32) for idx, det in enumerate(detections): box = det['box'] x1, y1, w, h = self.adjust_box_coordinates(box, (image_shape[0], image_shape[1])) if w <=1 or h <= 1: continue # Get the corresponding mask coefficients for this detection coeffs = det["mask_coefficients"] # Compute the linear combination of proto masks # for now, plural batch operation is not supported, and this is the point where you should start. # instead of hardcoded proto_masks[0], do some iterative/vectorize operation mask = np.tensordot(coeffs, proto_masks[0], axes=[0, 0]) # Dot product along the number of prototypes # Resize mask to the bounding box size, using sigmoid to normalize resized_mask = cv2.resize(mask, (w, h)) resized_mask = self.sigmoid(resized_mask) # Threshold to create a binary mask final_mask = (resized_mask > 0.5).astype(np.uint8) # Place the mask in the corresponding location on a full-sized mask image_binary full_mask = np.zeros((image_shape[0], image_shape[1]), dtype=np.uint8) full_mask[y1:y1+h, x1:x1+w] = final_mask # Combine the mask with the masks of other detections full_masks[idx] = full_mask all_mask = full_masks.sum(axis=0) all_mask = np.clip(all_mask, 0, 1) # Append a dimension so that cv2 can understand ```all_mask``` argument as an image. # This is because for this particular application, there is only single class ```water_body``` # However, if that is not the case, you must modify this part. all_mask = all_mask.reshape((image_shape[0], image_shape[1], 1)) return all_mask.astype(np.uint8) def adjust_box_coordinates(self, box: List[int], image_shape: Tuple[int, int]) -> Tuple[int, int, int, int]: """ Adjusts bounding box coordinates to ensure they lie within image boundaries. """ x1, y1, w, h = box x2, y2 = x1 + w, y1 + h # Clamp coordinates to image boundaries x1 = max(0, x1) y1 = max(0, y1) x2 = min(image_shape[1], x2) y2 = min(image_shape[0], y2) # Recalculate width and height w = x2 - x1 h = y2 - y1 return x1, y1, w, h def load_classes_from_file(self): with open(self.classes_path, 'r') as f: self.classes = f.read().strip().split('\n') def format_to_square(self, source): col, row = source.shape[1], source.shape[0] max_side = max(col, row) result = np.zeros((max_side, max_side, 3), dtype=np.uint8) result[0:row, 0:col] = source return result def overlay_mask(image, mask, color=(0, 255, 0), alpha=0.5): """ Overlays a mask onto an image_binary using a specified color and transparency level. Parameters: image (np.ndarray): The original image_binary. mask (np.ndarray): The mask to overlay. Must be the same size as the image_binary. color (tuple): The color for the mask overlay in BGR format (default is green). alpha (float): Transparency factor for the mask; 0 is fully transparent, 1 is opaque. Returns: np.ndarray: The image_binary with the overlay. """ assert alpha <= 1 and 0 <= alpha, (f"Error! invalid alpha value, it must be float, inbetween including 0 to 1, " f"\n given alpha : {alpha}") # Ensure the mask is a binary mask mask = (mask > 0).astype(np.uint8) # Convert mask to binary if not already # Create an overlay with the same size as the image_binary but only using the mask area overlay = np.zeros_like(image, dtype=np.uint8) overlay[mask == 1] = color # Blend the overlay with the image_binary using the alpha factor return cv2.addWeighted(src1=overlay, alpha=alpha, src2=image, beta=1 - alpha, gamma=0) def test(): import time # Path to your ONNX model and classes text file model_path = 'yoloseg/weight/best.onnx' classes_txt_file = 'config_files/yolo_config.txt' # image_path = 'yoloseg/img3.jpg' image_path = 'yoloseg/img3.jpg' model_input_shape = (640, 640) inference_engine = Inference( onnx_model_path=model_path, model_input_shape=model_input_shape, classes_txt_file=classes_txt_file, run_with_cuda=True ) # Load an image_binary img = cv2.imread(image_path) if img is None: print("Error loading image_binary") return img = cv2.resize(img, model_input_shape) # Run inference for i in range(10): t1 = time.time() detections, mask_maps = inference_engine.run_inference(img) t2 = time.time() print(t2 - t1) # Display results for detection in detections: x, y, w, h = detection['box'] class_name = detection['class_name'] confidence = detection['confidence'] cv2.rectangle(img, (x, y), (x+w, y+h), detection['color'], 2) label = f"{class_name}: {confidence:.2f}" cv2.putText(img, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, detection['color'], 2) # Show the image_binary # cv2.imshow('Detections', img) # cv2.waitKey(0) # cv2.destroyAllWindows() # If you also want to display segmentation maps, you would need additional handling here # Example for displaying first mask if available: if len(mask_maps) != 0: seg_image = overlay_mask(img, mask_maps[:,:,0], color=(0, 255, 0), alpha=0.3) cv2.imshow("segmentation", seg_image) cv2.waitKey(0) cv2.destroyAllWindows() if __name__ == "__main__": test()