import psycopg2 import csv import pandas as pd # Step 1: Parse the CSV data df = pd.read_csv("/home/juni/문서/대옹_모니터링/%EB%8C%80%EC%9B%85%ED%95%98%EC%9D%B4%ED%85%8D-%EB%AA%A8%EB%8B%88%ED%84%B0%EB%A7%81-%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A8%EC%96%B4/file/workHistory.csv") # Truncated for brevity, paste the entire CSV data here. df = df.iloc[:,1:] db_config = { 'dbname': 'welding', 'user': 'postgres', 'password': 'ts4430!@', 'host': 'localhost', # e.g., 'localhost' 'port': '5432', # e.g., '5432' } conn = psycopg2.connect(**db_config) cursor = conn.cursor() insert_sql = """ INSERT INTO Welding_Jobs (Welding_Job_Number, Mold_Name, Work_Start_Time, Defect_Status, Temperature, Relative_Humidity, Absolute_Humidity) VALUES (%s, %s, %s, %s, %s, %s, %s) """ for index, row in df.iterrows(): cursor.execute(insert_sql, ( row['용접 작업번호'], row['금형 이름'], row['작업 시작 시간'], row['불량 여부'], row['기온'], row['상대습도'], row['절대습도'] )) conn.commit() cursor.close() conn.close()