File name
Commit message
Commit date
File name
Commit message
Commit date
File name
Commit message
Commit date
File name
Commit message
Commit date
/*
MIT License http://www.opensource.org/licenses/mit-license.php
Author Tobias Koppers @sokra
*/
"use strict";
const AsyncDependencyToInitialChunkError = require("./AsyncDependencyToInitialChunkError");
const { connectChunkGroupParentAndChild } = require("./GraphHelpers");
const ModuleGraphConnection = require("./ModuleGraphConnection");
const { getEntryRuntime, mergeRuntime } = require("./util/runtime");
/** @typedef {import("./AsyncDependenciesBlock")} AsyncDependenciesBlock */
/** @typedef {import("./Chunk")} Chunk */
/** @typedef {import("./ChunkGroup")} ChunkGroup */
/** @typedef {import("./Compilation")} Compilation */
/** @typedef {import("./DependenciesBlock")} DependenciesBlock */
/** @typedef {import("./Dependency")} Dependency */
/** @typedef {import("./Entrypoint")} Entrypoint */
/** @typedef {import("./Module")} Module */
/** @typedef {import("./ModuleGraph")} ModuleGraph */
/** @typedef {import("./ModuleGraphConnection").ConnectionState} ConnectionState */
/** @typedef {import("./logging/Logger").Logger} Logger */
/** @typedef {import("./util/runtime").RuntimeSpec} RuntimeSpec */
/**
* @typedef {Object} QueueItem
* @property {number} action
* @property {DependenciesBlock} block
* @property {Module} module
* @property {Chunk} chunk
* @property {ChunkGroup} chunkGroup
* @property {ChunkGroupInfo} chunkGroupInfo
*/
/** @typedef {Set<Module> & { plus: Set<Module> }} ModuleSetPlus */
/**
* @typedef {Object} ChunkGroupInfo
* @property {ChunkGroup} chunkGroup the chunk group
* @property {RuntimeSpec} runtime the runtimes
* @property {ModuleSetPlus} minAvailableModules current minimal set of modules available at this point
* @property {boolean} minAvailableModulesOwned true, if minAvailableModules is owned and can be modified
* @property {ModuleSetPlus[]} availableModulesToBeMerged enqueued updates to the minimal set of available modules
* @property {Set<Module>=} skippedItems modules that were skipped because module is already available in parent chunks (need to reconsider when minAvailableModules is shrinking)
* @property {Set<[Module, ConnectionState]>=} skippedModuleConnections referenced modules that where skipped because they were not active in this runtime
* @property {ModuleSetPlus} resultingAvailableModules set of modules available including modules from this chunk group
* @property {Set<ChunkGroupInfo>} children set of children chunk groups, that will be revisited when availableModules shrink
* @property {Set<ChunkGroupInfo>} availableSources set of chunk groups that are the source for minAvailableModules
* @property {Set<ChunkGroupInfo>} availableChildren set of chunk groups which depend on the this chunk group as availableSource
* @property {number} preOrderIndex next pre order index
* @property {number} postOrderIndex next post order index
* @property {boolean} chunkLoading has a chunk loading mechanism
* @property {boolean} asyncChunks create async chunks
*/
/**
* @typedef {Object} BlockChunkGroupConnection
* @property {ChunkGroupInfo} originChunkGroupInfo origin chunk group
* @property {ChunkGroup} chunkGroup referenced chunk group
*/
const EMPTY_SET = /** @type {ModuleSetPlus} */ (new Set());
EMPTY_SET.plus = EMPTY_SET;
/**
* @param {ModuleSetPlus} a first set
* @param {ModuleSetPlus} b second set
* @returns {number} cmp
*/
const bySetSize = (a, b) => {
return b.size + b.plus.size - a.size - a.plus.size;
};
const extractBlockModules = (module, moduleGraph, runtime, blockModulesMap) => {
let blockCache;
let modules;
const arrays = [];
const queue = [module];
while (queue.length > 0) {
const block = queue.pop();
const arr = [];
arrays.push(arr);
blockModulesMap.set(block, arr);
for (const b of block.blocks) {
queue.push(b);
}
}
for (const connection of moduleGraph.getOutgoingConnections(module)) {
const d = connection.dependency;
// We skip connections without dependency
if (!d) continue;
const m = connection.module;
// We skip connections without Module pointer
if (!m) continue;
// We skip weak connections
if (connection.weak) continue;
const state = connection.getActiveState(runtime);
// We skip inactive connections
if (state === false) continue;
const block = moduleGraph.getParentBlock(d);
let index = moduleGraph.getParentBlockIndex(d);
// deprecated fallback
if (index < 0) {
index = block.dependencies.indexOf(d);
}
if (blockCache !== block) {
modules = blockModulesMap.get((blockCache = block));
}
const i = index << 2;
modules[i] = m;
modules[i + 1] = state;
}
for (const modules of arrays) {
if (modules.length === 0) continue;
let indexMap;
let length = 0;
outer: for (let j = 0; j < modules.length; j += 2) {
const m = modules[j];
if (m === undefined) continue;
const state = modules[j + 1];
if (indexMap === undefined) {
let i = 0;
for (; i < length; i += 2) {
if (modules[i] === m) {
const merged = modules[i + 1];
if (merged === true) continue outer;
modules[i + 1] = ModuleGraphConnection.addConnectionStates(
merged,
state
);
}
}
modules[length] = m;
length++;
modules[length] = state;
length++;
if (length > 30) {
// To avoid worse case performance, we will use an index map for
// linear cost access, which allows to maintain O(n) complexity
// while keeping allocations down to a minimum
indexMap = new Map();
for (let i = 0; i < length; i += 2) {
indexMap.set(modules[i], i + 1);
}
}
} else {
const idx = indexMap.get(m);
if (idx !== undefined) {
const merged = modules[idx];
if (merged === true) continue outer;
modules[idx] = ModuleGraphConnection.addConnectionStates(
merged,
state
);
} else {
modules[length] = m;
length++;
modules[length] = state;
indexMap.set(m, length);
length++;
}
}
}
modules.length = length;
}
};
/**
*
* @param {Logger} logger a logger
* @param {Compilation} compilation the compilation
* @param {Map<Entrypoint, Module[]>} inputEntrypointsAndModules chunk groups which are processed with the modules
* @param {Map<ChunkGroup, ChunkGroupInfo>} chunkGroupInfoMap mapping from chunk group to available modules
* @param {Map<AsyncDependenciesBlock, BlockChunkGroupConnection[]>} blockConnections connection for blocks
* @param {Set<DependenciesBlock>} blocksWithNestedBlocks flag for blocks that have nested blocks
* @param {Set<ChunkGroup>} allCreatedChunkGroups filled with all chunk groups that are created here
*/
const visitModules = (
logger,
compilation,
inputEntrypointsAndModules,
chunkGroupInfoMap,
blockConnections,
blocksWithNestedBlocks,
allCreatedChunkGroups
) => {
const { moduleGraph, chunkGraph, moduleMemCaches } = compilation;
const blockModulesRuntimeMap = new Map();
/** @type {RuntimeSpec | false} */
let blockModulesMapRuntime = false;
let blockModulesMap;
/**
*
* @param {DependenciesBlock} block block
* @param {RuntimeSpec} runtime runtime
* @returns {(Module | ConnectionState)[]} block modules in flatten tuples
*/
const getBlockModules = (block, runtime) => {
if (blockModulesMapRuntime !== runtime) {
blockModulesMap = blockModulesRuntimeMap.get(runtime);
if (blockModulesMap === undefined) {
blockModulesMap = new Map();
blockModulesRuntimeMap.set(runtime, blockModulesMap);
}
}
let blockModules = blockModulesMap.get(block);
if (blockModules !== undefined) return blockModules;
const module = /** @type {Module} */ (block.getRootBlock());
const memCache = moduleMemCaches && moduleMemCaches.get(module);
if (memCache !== undefined) {
const map = memCache.provide(
"bundleChunkGraph.blockModules",
runtime,
() => {
logger.time("visitModules: prepare");
const map = new Map();
extractBlockModules(module, moduleGraph, runtime, map);
logger.timeAggregate("visitModules: prepare");
return map;
}
);
for (const [block, blockModules] of map)
blockModulesMap.set(block, blockModules);
return map.get(block);
} else {
logger.time("visitModules: prepare");
extractBlockModules(module, moduleGraph, runtime, blockModulesMap);
blockModules = blockModulesMap.get(block);
logger.timeAggregate("visitModules: prepare");
return blockModules;
}
};
let statProcessedQueueItems = 0;
let statProcessedBlocks = 0;
let statConnectedChunkGroups = 0;
let statProcessedChunkGroupsForMerging = 0;
let statMergedAvailableModuleSets = 0;
let statForkedAvailableModules = 0;
let statForkedAvailableModulesCount = 0;
let statForkedAvailableModulesCountPlus = 0;
let statForkedMergedModulesCount = 0;
let statForkedMergedModulesCountPlus = 0;
let statForkedResultModulesCount = 0;
let statChunkGroupInfoUpdated = 0;
let statChildChunkGroupsReconnected = 0;
let nextChunkGroupIndex = 0;
let nextFreeModulePreOrderIndex = 0;
let nextFreeModulePostOrderIndex = 0;
/** @type {Map<DependenciesBlock, ChunkGroupInfo>} */
const blockChunkGroups = new Map();
/** @type {Map<string, ChunkGroupInfo>} */
const namedChunkGroups = new Map();
/** @type {Map<string, ChunkGroupInfo>} */
const namedAsyncEntrypoints = new Map();
const ADD_AND_ENTER_ENTRY_MODULE = 0;
const ADD_AND_ENTER_MODULE = 1;
const ENTER_MODULE = 2;
const PROCESS_BLOCK = 3;
const PROCESS_ENTRY_BLOCK = 4;
const LEAVE_MODULE = 5;
/** @type {QueueItem[]} */
let queue = [];
/** @type {Map<ChunkGroupInfo, Set<ChunkGroupInfo>>} */
const queueConnect = new Map();
/** @type {Set<ChunkGroupInfo>} */
const chunkGroupsForCombining = new Set();
// Fill queue with entrypoint modules
// Create ChunkGroupInfo for entrypoints
for (const [chunkGroup, modules] of inputEntrypointsAndModules) {
const runtime = getEntryRuntime(
compilation,
chunkGroup.name,
chunkGroup.options
);
/** @type {ChunkGroupInfo} */
const chunkGroupInfo = {
chunkGroup,
runtime,
minAvailableModules: undefined,
minAvailableModulesOwned: false,
availableModulesToBeMerged: [],
skippedItems: undefined,
resultingAvailableModules: undefined,
children: undefined,
availableSources: undefined,
availableChildren: undefined,
preOrderIndex: 0,
postOrderIndex: 0,
chunkLoading:
chunkGroup.options.chunkLoading !== undefined
? chunkGroup.options.chunkLoading !== false
: compilation.outputOptions.chunkLoading !== false,
asyncChunks:
chunkGroup.options.asyncChunks !== undefined
? chunkGroup.options.asyncChunks
: compilation.outputOptions.asyncChunks !== false
};
chunkGroup.index = nextChunkGroupIndex++;
if (chunkGroup.getNumberOfParents() > 0) {
// minAvailableModules for child entrypoints are unknown yet, set to undefined.
// This means no module is added until other sets are merged into
// this minAvailableModules (by the parent entrypoints)
const skippedItems = new Set();
for (const module of modules) {
skippedItems.add(module);
}
chunkGroupInfo.skippedItems = skippedItems;
chunkGroupsForCombining.add(chunkGroupInfo);
} else {
// The application may start here: We start with an empty list of available modules
chunkGroupInfo.minAvailableModules = EMPTY_SET;
const chunk = chunkGroup.getEntrypointChunk();
for (const module of modules) {
queue.push({
action: ADD_AND_ENTER_MODULE,
block: module,
module,
chunk,
chunkGroup,
chunkGroupInfo
});
}
}
chunkGroupInfoMap.set(chunkGroup, chunkGroupInfo);
if (chunkGroup.name) {
namedChunkGroups.set(chunkGroup.name, chunkGroupInfo);
}
}
// Fill availableSources with parent-child dependencies between entrypoints
for (const chunkGroupInfo of chunkGroupsForCombining) {
const { chunkGroup } = chunkGroupInfo;
chunkGroupInfo.availableSources = new Set();
for (const parent of chunkGroup.parentsIterable) {
const parentChunkGroupInfo = chunkGroupInfoMap.get(parent);
chunkGroupInfo.availableSources.add(parentChunkGroupInfo);
if (parentChunkGroupInfo.availableChildren === undefined) {
parentChunkGroupInfo.availableChildren = new Set();
}
parentChunkGroupInfo.availableChildren.add(chunkGroupInfo);
}
}
// pop() is used to read from the queue
// so it need to be reversed to be iterated in
// correct order
queue.reverse();
/** @type {Set<ChunkGroupInfo>} */
const outdatedChunkGroupInfo = new Set();
/** @type {Set<ChunkGroupInfo>} */
const chunkGroupsForMerging = new Set();
/** @type {QueueItem[]} */
let queueDelayed = [];
/** @type {[Module, ConnectionState][]} */
const skipConnectionBuffer = [];
/** @type {Module[]} */
const skipBuffer = [];
/** @type {QueueItem[]} */
const queueBuffer = [];
/** @type {Module} */
let module;
/** @type {Chunk} */
let chunk;
/** @type {ChunkGroup} */
let chunkGroup;
/** @type {DependenciesBlock} */
let block;
/** @type {ChunkGroupInfo} */
let chunkGroupInfo;
// For each async Block in graph
/**
* @param {AsyncDependenciesBlock} b iterating over each Async DepBlock
* @returns {void}
*/
const iteratorBlock = b => {
// 1. We create a chunk group with single chunk in it for this Block
// but only once (blockChunkGroups map)
let cgi = blockChunkGroups.get(b);
/** @type {ChunkGroup} */
let c;
/** @type {Entrypoint} */
let entrypoint;
const entryOptions = b.groupOptions && b.groupOptions.entryOptions;
if (cgi === undefined) {
const chunkName = (b.groupOptions && b.groupOptions.name) || b.chunkName;
if (entryOptions) {
cgi = namedAsyncEntrypoints.get(chunkName);
if (!cgi) {
entrypoint = compilation.addAsyncEntrypoint(
entryOptions,
module,
b.loc,
b.request
);
entrypoint.index = nextChunkGroupIndex++;
cgi = {
chunkGroup: entrypoint,
runtime: entrypoint.options.runtime || entrypoint.name,
minAvailableModules: EMPTY_SET,
minAvailableModulesOwned: false,
availableModulesToBeMerged: [],
skippedItems: undefined,
resultingAvailableModules: undefined,
children: undefined,
availableSources: undefined,
availableChildren: undefined,
preOrderIndex: 0,
postOrderIndex: 0,
chunkLoading:
entryOptions.chunkLoading !== undefined
? entryOptions.chunkLoading !== false
: chunkGroupInfo.chunkLoading,
asyncChunks:
entryOptions.asyncChunks !== undefined
? entryOptions.asyncChunks
: chunkGroupInfo.asyncChunks
};
chunkGroupInfoMap.set(entrypoint, cgi);
chunkGraph.connectBlockAndChunkGroup(b, entrypoint);
if (chunkName) {
namedAsyncEntrypoints.set(chunkName, cgi);
}
} else {
entrypoint = /** @type {Entrypoint} */ (cgi.chunkGroup);
// TODO merge entryOptions
entrypoint.addOrigin(module, b.loc, b.request);
chunkGraph.connectBlockAndChunkGroup(b, entrypoint);
}
// 2. We enqueue the DependenciesBlock for traversal
queueDelayed.push({
action: PROCESS_ENTRY_BLOCK,
block: b,
module: module,
chunk: entrypoint.chunks[0],
chunkGroup: entrypoint,
chunkGroupInfo: cgi
});
} else if (!chunkGroupInfo.asyncChunks || !chunkGroupInfo.chunkLoading) {
// Just queue the block into the current chunk group
queue.push({
action: PROCESS_BLOCK,
block: b,
module: module,
chunk,
chunkGroup,
chunkGroupInfo
});
} else {
cgi = chunkName && namedChunkGroups.get(chunkName);
if (!cgi) {
c = compilation.addChunkInGroup(
b.groupOptions || b.chunkName,
module,
b.loc,
b.request
);
c.index = nextChunkGroupIndex++;
cgi = {
chunkGroup: c,
runtime: chunkGroupInfo.runtime,
minAvailableModules: undefined,
minAvailableModulesOwned: undefined,
availableModulesToBeMerged: [],
skippedItems: undefined,
resultingAvailableModules: undefined,
children: undefined,
availableSources: undefined,
availableChildren: undefined,
preOrderIndex: 0,
postOrderIndex: 0,
chunkLoading: chunkGroupInfo.chunkLoading,
asyncChunks: chunkGroupInfo.asyncChunks
};
allCreatedChunkGroups.add(c);
chunkGroupInfoMap.set(c, cgi);
if (chunkName) {
namedChunkGroups.set(chunkName, cgi);
}
} else {
c = cgi.chunkGroup;
if (c.isInitial()) {
compilation.errors.push(
new AsyncDependencyToInitialChunkError(chunkName, module, b.loc)
);
c = chunkGroup;
}
c.addOptions(b.groupOptions);
c.addOrigin(module, b.loc, b.request);
}
blockConnections.set(b, []);
}
blockChunkGroups.set(b, cgi);
} else if (entryOptions) {
entrypoint = /** @type {Entrypoint} */ (cgi.chunkGroup);
} else {
c = cgi.chunkGroup;
}
if (c !== undefined) {
// 2. We store the connection for the block
// to connect it later if needed
blockConnections.get(b).push({
originChunkGroupInfo: chunkGroupInfo,
chunkGroup: c
});
// 3. We enqueue the chunk group info creation/updating
let connectList = queueConnect.get(chunkGroupInfo);
if (connectList === undefined) {
connectList = new Set();
queueConnect.set(chunkGroupInfo, connectList);
}
connectList.add(cgi);
// TODO check if this really need to be done for each traversal
// or if it is enough when it's queued when created
// 4. We enqueue the DependenciesBlock for traversal
queueDelayed.push({
action: PROCESS_BLOCK,
block: b,
module: module,
chunk: c.chunks[0],
chunkGroup: c,
chunkGroupInfo: cgi
});
} else if (entrypoint !== undefined) {
chunkGroupInfo.chunkGroup.addAsyncEntrypoint(entrypoint);
}
};
/**
* @param {DependenciesBlock} block the block
* @returns {void}
*/
const processBlock = block => {
statProcessedBlocks++;
// get prepared block info
const blockModules = getBlockModules(block, chunkGroupInfo.runtime);
if (blockModules !== undefined) {
const { minAvailableModules } = chunkGroupInfo;
// Buffer items because order need to be reversed to get indices correct
// Traverse all referenced modules
for (let i = 0; i < blockModules.length; i += 2) {
const refModule = /** @type {Module} */ (blockModules[i]);
if (chunkGraph.isModuleInChunk(refModule, chunk)) {
// skip early if already connected
continue;
}
const activeState = /** @type {ConnectionState} */ (
blockModules[i + 1]
);
if (activeState !== true) {
skipConnectionBuffer.push([refModule, activeState]);
if (activeState === false) continue;
}
if (
activeState === true &&
(minAvailableModules.has(refModule) ||
minAvailableModules.plus.has(refModule))
) {
// already in parent chunks, skip it for now
skipBuffer.push(refModule);
continue;
}
// enqueue, then add and enter to be in the correct order
// this is relevant with circular dependencies
queueBuffer.push({
action: activeState === true ? ADD_AND_ENTER_MODULE : PROCESS_BLOCK,
block: refModule,
module: refModule,
chunk,
chunkGroup,
chunkGroupInfo
});
}
// Add buffered items in reverse order
if (skipConnectionBuffer.length > 0) {
let { skippedModuleConnections } = chunkGroupInfo;
if (skippedModuleConnections === undefined) {
chunkGroupInfo.skippedModuleConnections = skippedModuleConnections =
new Set();
}
for (let i = skipConnectionBuffer.length - 1; i >= 0; i--) {
skippedModuleConnections.add(skipConnectionBuffer[i]);
}
skipConnectionBuffer.length = 0;
}
if (skipBuffer.length > 0) {
let { skippedItems } = chunkGroupInfo;
if (skippedItems === undefined) {
chunkGroupInfo.skippedItems = skippedItems = new Set();
}
for (let i = skipBuffer.length - 1; i >= 0; i--) {
skippedItems.add(skipBuffer[i]);
}
skipBuffer.length = 0;
}
if (queueBuffer.length > 0) {
for (let i = queueBuffer.length - 1; i >= 0; i--) {
queue.push(queueBuffer[i]);
}
queueBuffer.length = 0;
}
}
// Traverse all Blocks
for (const b of block.blocks) {
iteratorBlock(b);
}
if (block.blocks.length > 0 && module !== block) {
blocksWithNestedBlocks.add(block);
}
};
/**
* @param {DependenciesBlock} block the block
* @returns {void}
*/
const processEntryBlock = block => {
statProcessedBlocks++;
// get prepared block info
const blockModules = getBlockModules(block, chunkGroupInfo.runtime);
if (blockModules !== undefined) {
// Traverse all referenced modules
for (let i = 0; i < blockModules.length; i += 2) {
const refModule = /** @type {Module} */ (blockModules[i]);
const activeState = /** @type {ConnectionState} */ (
blockModules[i + 1]
);
// enqueue, then add and enter to be in the correct order
// this is relevant with circular dependencies
queueBuffer.push({
action:
activeState === true ? ADD_AND_ENTER_ENTRY_MODULE : PROCESS_BLOCK,
block: refModule,
module: refModule,
chunk,
chunkGroup,
chunkGroupInfo
});
}
// Add buffered items in reverse order
if (queueBuffer.length > 0) {
for (let i = queueBuffer.length - 1; i >= 0; i--) {
queue.push(queueBuffer[i]);
}
queueBuffer.length = 0;
}
}
// Traverse all Blocks
for (const b of block.blocks) {
iteratorBlock(b);
}
if (block.blocks.length > 0 && module !== block) {
blocksWithNestedBlocks.add(block);
}
};
const processQueue = () => {
while (queue.length) {
statProcessedQueueItems++;
const queueItem = queue.pop();
module = queueItem.module;
block = queueItem.block;
chunk = queueItem.chunk;
chunkGroup = queueItem.chunkGroup;
chunkGroupInfo = queueItem.chunkGroupInfo;
switch (queueItem.action) {
case ADD_AND_ENTER_ENTRY_MODULE:
chunkGraph.connectChunkAndEntryModule(
chunk,
module,
/** @type {Entrypoint} */ (chunkGroup)
);
// fallthrough
case ADD_AND_ENTER_MODULE: {
if (chunkGraph.isModuleInChunk(module, chunk)) {
// already connected, skip it
break;
}
// We connect Module and Chunk
chunkGraph.connectChunkAndModule(chunk, module);
}
// fallthrough
case ENTER_MODULE: {
const index = chunkGroup.getModulePreOrderIndex(module);
if (index === undefined) {
chunkGroup.setModulePreOrderIndex(
module,
chunkGroupInfo.preOrderIndex++
);
}
if (
moduleGraph.setPreOrderIndexIfUnset(
module,
nextFreeModulePreOrderIndex
)
) {
nextFreeModulePreOrderIndex++;
}
// reuse queueItem
queueItem.action = LEAVE_MODULE;
queue.push(queueItem);
}
// fallthrough
case PROCESS_BLOCK: {
processBlock(block);
break;
}
case PROCESS_ENTRY_BLOCK: {
processEntryBlock(block);
break;
}
case LEAVE_MODULE: {
const index = chunkGroup.getModulePostOrderIndex(module);
if (index === undefined) {
chunkGroup.setModulePostOrderIndex(
module,
chunkGroupInfo.postOrderIndex++
);
}
if (
moduleGraph.setPostOrderIndexIfUnset(
module,
nextFreeModulePostOrderIndex
)
) {
nextFreeModulePostOrderIndex++;
}
break;
}
}
}
};
const calculateResultingAvailableModules = chunkGroupInfo => {
if (chunkGroupInfo.resultingAvailableModules)
return chunkGroupInfo.resultingAvailableModules;
const minAvailableModules = chunkGroupInfo.minAvailableModules;
// Create a new Set of available modules at this point
// We want to be as lazy as possible. There are multiple ways doing this:
// Note that resultingAvailableModules is stored as "(a) + (b)" as it's a ModuleSetPlus
// - resultingAvailableModules = (modules of chunk) + (minAvailableModules + minAvailableModules.plus)
// - resultingAvailableModules = (minAvailableModules + modules of chunk) + (minAvailableModules.plus)
// We choose one depending on the size of minAvailableModules vs minAvailableModules.plus
let resultingAvailableModules;
if (minAvailableModules.size > minAvailableModules.plus.size) {
// resultingAvailableModules = (modules of chunk) + (minAvailableModules + minAvailableModules.plus)
resultingAvailableModules =
/** @type {Set<Module> & {plus: Set<Module>}} */ (new Set());
for (const module of minAvailableModules.plus)
minAvailableModules.add(module);
minAvailableModules.plus = EMPTY_SET;
resultingAvailableModules.plus = minAvailableModules;
chunkGroupInfo.minAvailableModulesOwned = false;
} else {
// resultingAvailableModules = (minAvailableModules + modules of chunk) + (minAvailableModules.plus)
resultingAvailableModules =
/** @type {Set<Module> & {plus: Set<Module>}} */ (
new Set(minAvailableModules)
);
resultingAvailableModules.plus = minAvailableModules.plus;
}
// add the modules from the chunk group to the set
for (const chunk of chunkGroupInfo.chunkGroup.chunks) {
for (const m of chunkGraph.getChunkModulesIterable(chunk)) {
resultingAvailableModules.add(m);
}
}
return (chunkGroupInfo.resultingAvailableModules =
resultingAvailableModules);
};
const processConnectQueue = () => {
// Figure out new parents for chunk groups
// to get new available modules for these children
for (const [chunkGroupInfo, targets] of queueConnect) {
// 1. Add new targets to the list of children
if (chunkGroupInfo.children === undefined) {
chunkGroupInfo.children = targets;
} else {
for (const target of targets) {
chunkGroupInfo.children.add(target);
}
}
// 2. Calculate resulting available modules
const resultingAvailableModules =
calculateResultingAvailableModules(chunkGroupInfo);
const runtime = chunkGroupInfo.runtime;
// 3. Update chunk group info
for (const target of targets) {
target.availableModulesToBeMerged.push(resultingAvailableModules);
chunkGroupsForMerging.add(target);
const oldRuntime = target.runtime;
const newRuntime = mergeRuntime(oldRuntime, runtime);
if (oldRuntime !== newRuntime) {
target.runtime = newRuntime;
outdatedChunkGroupInfo.add(target);
}
}
statConnectedChunkGroups += targets.size;
}
queueConnect.clear();
};
const processChunkGroupsForMerging = () => {
statProcessedChunkGroupsForMerging += chunkGroupsForMerging.size;
// Execute the merge
for (const info of chunkGroupsForMerging) {
const availableModulesToBeMerged = info.availableModulesToBeMerged;
let cachedMinAvailableModules = info.minAvailableModules;
statMergedAvailableModuleSets += availableModulesToBeMerged.length;
// 1. Get minimal available modules
// It doesn't make sense to traverse a chunk again with more available modules.
// This step calculates the minimal available modules and skips traversal when
// the list didn't shrink.
if (availableModulesToBeMerged.length > 1) {
availableModulesToBeMerged.sort(bySetSize);
}
let changed = false;
merge: for (const availableModules of availableModulesToBeMerged) {
if (cachedMinAvailableModules === undefined) {
cachedMinAvailableModules = availableModules;
info.minAvailableModules = cachedMinAvailableModules;
info.minAvailableModulesOwned = false;
changed = true;
} else {
if (info.minAvailableModulesOwned) {
// We own it and can modify it
if (cachedMinAvailableModules.plus === availableModules.plus) {
for (const m of cachedMinAvailableModules) {
if (!availableModules.has(m)) {
cachedMinAvailableModules.delete(m);
changed = true;
}
}
} else {
for (const m of cachedMinAvailableModules) {
if (!availableModules.has(m) && !availableModules.plus.has(m)) {
cachedMinAvailableModules.delete(m);
changed = true;
}
}
for (const m of cachedMinAvailableModules.plus) {
if (!availableModules.has(m) && !availableModules.plus.has(m)) {
// We can't remove modules from the plus part
// so we need to merge plus into the normal part to allow modifying it
const iterator =
cachedMinAvailableModules.plus[Symbol.iterator]();
// fast forward add all modules until m
/** @type {IteratorResult<Module>} */
let it;
while (!(it = iterator.next()).done) {
const module = it.value;
if (module === m) break;
cachedMinAvailableModules.add(module);
}
// check the remaining modules before adding
while (!(it = iterator.next()).done) {
const module = it.value;
if (
availableModules.has(module) ||
availableModules.plus.has(module)
) {
cachedMinAvailableModules.add(module);
}
}
cachedMinAvailableModules.plus = EMPTY_SET;
changed = true;
continue merge;
}
}
}
} else if (cachedMinAvailableModules.plus === availableModules.plus) {
// Common and fast case when the plus part is shared
// We only need to care about the normal part
if (availableModules.size < cachedMinAvailableModules.size) {
// the new availableModules is smaller so it's faster to
// fork from the new availableModules
statForkedAvailableModules++;
statForkedAvailableModulesCount += availableModules.size;
statForkedMergedModulesCount += cachedMinAvailableModules.size;
// construct a new Set as intersection of cachedMinAvailableModules and availableModules
const newSet = /** @type {ModuleSetPlus} */ (new Set());
newSet.plus = availableModules.plus;
for (const m of availableModules) {
if (cachedMinAvailableModules.has(m)) {
newSet.add(m);
}
}
statForkedResultModulesCount += newSet.size;
cachedMinAvailableModules = newSet;
info.minAvailableModulesOwned = true;
info.minAvailableModules = newSet;
changed = true;
continue merge;
}
for (const m of cachedMinAvailableModules) {
if (!availableModules.has(m)) {
// cachedMinAvailableModules need to be modified
// but we don't own it
statForkedAvailableModules++;
statForkedAvailableModulesCount +=
cachedMinAvailableModules.size;
statForkedMergedModulesCount += availableModules.size;
// construct a new Set as intersection of cachedMinAvailableModules and availableModules
// as the plus part is equal we can just take over this one
const newSet = /** @type {ModuleSetPlus} */ (new Set());
newSet.plus = availableModules.plus;
const iterator = cachedMinAvailableModules[Symbol.iterator]();
// fast forward add all modules until m
/** @type {IteratorResult<Module>} */
let it;
while (!(it = iterator.next()).done) {
const module = it.value;
if (module === m) break;
newSet.add(module);
}
// check the remaining modules before adding
while (!(it = iterator.next()).done) {
const module = it.value;
if (availableModules.has(module)) {
newSet.add(module);
}
}
statForkedResultModulesCount += newSet.size;
cachedMinAvailableModules = newSet;
info.minAvailableModulesOwned = true;
info.minAvailableModules = newSet;
changed = true;
continue merge;
}
}
} else {
for (const m of cachedMinAvailableModules) {
if (!availableModules.has(m) && !availableModules.plus.has(m)) {
// cachedMinAvailableModules need to be modified
// but we don't own it
statForkedAvailableModules++;
statForkedAvailableModulesCount +=
cachedMinAvailableModules.size;
statForkedAvailableModulesCountPlus +=
cachedMinAvailableModules.plus.size;
statForkedMergedModulesCount += availableModules.size;
statForkedMergedModulesCountPlus += availableModules.plus.size;
// construct a new Set as intersection of cachedMinAvailableModules and availableModules
const newSet = /** @type {ModuleSetPlus} */ (new Set());
newSet.plus = EMPTY_SET;
const iterator = cachedMinAvailableModules[Symbol.iterator]();
// fast forward add all modules until m
/** @type {IteratorResult<Module>} */
let it;
while (!(it = iterator.next()).done) {
const module = it.value;
if (module === m) break;
newSet.add(module);
}
// check the remaining modules before adding
while (!(it = iterator.next()).done) {
const module = it.value;
if (
availableModules.has(module) ||
availableModules.plus.has(module)
) {
newSet.add(module);
}
}
// also check all modules in cachedMinAvailableModules.plus
for (const module of cachedMinAvailableModules.plus) {
if (
availableModules.has(module) ||
availableModules.plus.has(module)
) {
newSet.add(module);
}
}
statForkedResultModulesCount += newSet.size;
cachedMinAvailableModules = newSet;
info.minAvailableModulesOwned = true;
info.minAvailableModules = newSet;
changed = true;
continue merge;
}
}
for (const m of cachedMinAvailableModules.plus) {
if (!availableModules.has(m) && !availableModules.plus.has(m)) {
// cachedMinAvailableModules need to be modified
// but we don't own it
statForkedAvailableModules++;
statForkedAvailableModulesCount +=
cachedMinAvailableModules.size;
statForkedAvailableModulesCountPlus +=
cachedMinAvailableModules.plus.size;
statForkedMergedModulesCount += availableModules.size;
statForkedMergedModulesCountPlus += availableModules.plus.size;
// construct a new Set as intersection of cachedMinAvailableModules and availableModules
// we already know that all modules directly from cachedMinAvailableModules are in availableModules too
const newSet = /** @type {ModuleSetPlus} */ (
new Set(cachedMinAvailableModules)
);
newSet.plus = EMPTY_SET;
const iterator =
cachedMinAvailableModules.plus[Symbol.iterator]();
// fast forward add all modules until m
/** @type {IteratorResult<Module>} */
let it;
while (!(it = iterator.next()).done) {
const module = it.value;
if (module === m) break;
newSet.add(module);
}
// check the remaining modules before adding
while (!(it = iterator.next()).done) {
const module = it.value;
if (
availableModules.has(module) ||
availableModules.plus.has(module)
) {
newSet.add(module);
}
}
statForkedResultModulesCount += newSet.size;
cachedMinAvailableModules = newSet;
info.minAvailableModulesOwned = true;
info.minAvailableModules = newSet;
changed = true;
continue merge;
}
}
}
}
}
availableModulesToBeMerged.length = 0;
if (changed) {
info.resultingAvailableModules = undefined;
outdatedChunkGroupInfo.add(info);
}
}
chunkGroupsForMerging.clear();
};
const processChunkGroupsForCombining = () => {
for (const info of chunkGroupsForCombining) {
for (const source of info.availableSources) {
if (!source.minAvailableModules) {
chunkGroupsForCombining.delete(info);
break;
}
}
}
for (const info of chunkGroupsForCombining) {
const availableModules = /** @type {ModuleSetPlus} */ (new Set());
availableModules.plus = EMPTY_SET;
const mergeSet = set => {
if (set.size > availableModules.plus.size) {
for (const item of availableModules.plus) availableModules.add(item);
availableModules.plus = set;
} else {
for (const item of set) availableModules.add(item);
}
};
// combine minAvailableModules from all resultingAvailableModules
for (const source of info.availableSources) {
const resultingAvailableModules =
calculateResultingAvailableModules(source);
mergeSet(resultingAvailableModules);
mergeSet(resultingAvailableModules.plus);
}
info.minAvailableModules = availableModules;
info.minAvailableModulesOwned = false;
info.resultingAvailableModules = undefined;
outdatedChunkGroupInfo.add(info);
}
chunkGroupsForCombining.clear();
};
const processOutdatedChunkGroupInfo = () => {
statChunkGroupInfoUpdated += outdatedChunkGroupInfo.size;
// Revisit skipped elements
for (const info of outdatedChunkGroupInfo) {
// 1. Reconsider skipped items
if (info.skippedItems !== undefined) {
const { minAvailableModules } = info;
for (const module of info.skippedItems) {
if (
!minAvailableModules.has(module) &&
!minAvailableModules.plus.has(module)
) {
queue.push({
action: ADD_AND_ENTER_MODULE,
block: module,
module,
chunk: info.chunkGroup.chunks[0],
chunkGroup: info.chunkGroup,
chunkGroupInfo: info
});
info.skippedItems.delete(module);
}
}
}
// 2. Reconsider skipped connections
if (info.skippedModuleConnections !== undefined) {
const { minAvailableModules } = info;
for (const entry of info.skippedModuleConnections) {
const [module, activeState] = entry;
if (activeState === false) continue;
if (activeState === true) {
info.skippedModuleConnections.delete(entry);
}
if (
activeState === true &&
(minAvailableModules.has(module) ||
minAvailableModules.plus.has(module))
) {
info.skippedItems.add(module);
continue;
}
queue.push({
action: activeState === true ? ADD_AND_ENTER_MODULE : PROCESS_BLOCK,
block: module,
module,
chunk: info.chunkGroup.chunks[0],
chunkGroup: info.chunkGroup,
chunkGroupInfo: info
});
}
}
// 2. Reconsider children chunk groups
if (info.children !== undefined) {
statChildChunkGroupsReconnected += info.children.size;
for (const cgi of info.children) {
let connectList = queueConnect.get(info);
if (connectList === undefined) {
connectList = new Set();
queueConnect.set(info, connectList);
}
connectList.add(cgi);
}
}
// 3. Reconsider chunk groups for combining
if (info.availableChildren !== undefined) {
for (const cgi of info.availableChildren) {
chunkGroupsForCombining.add(cgi);
}
}
}
outdatedChunkGroupInfo.clear();
};
// Iterative traversal of the Module graph
// Recursive would be simpler to write but could result in Stack Overflows
while (queue.length || queueConnect.size) {
logger.time("visitModules: visiting");
processQueue();
logger.timeAggregateEnd("visitModules: prepare");
logger.timeEnd("visitModules: visiting");
if (chunkGroupsForCombining.size > 0) {
logger.time("visitModules: combine available modules");
processChunkGroupsForCombining();
logger.timeEnd("visitModules: combine available modules");
}
if (queueConnect.size > 0) {
logger.time("visitModules: calculating available modules");
processConnectQueue();
logger.timeEnd("visitModules: calculating available modules");
if (chunkGroupsForMerging.size > 0) {
logger.time("visitModules: merging available modules");
processChunkGroupsForMerging();
logger.timeEnd("visitModules: merging available modules");
}
}
if (outdatedChunkGroupInfo.size > 0) {
logger.time("visitModules: check modules for revisit");
processOutdatedChunkGroupInfo();
logger.timeEnd("visitModules: check modules for revisit");
}
// Run queueDelayed when all items of the queue are processed
// This is important to get the global indexing correct
// Async blocks should be processed after all sync blocks are processed
if (queue.length === 0) {
const tempQueue = queue;
queue = queueDelayed.reverse();
queueDelayed = tempQueue;
}
}
logger.log(
`${statProcessedQueueItems} queue items processed (${statProcessedBlocks} blocks)`
);
logger.log(`${statConnectedChunkGroups} chunk groups connected`);
logger.log(
`${statProcessedChunkGroupsForMerging} chunk groups processed for merging (${statMergedAvailableModuleSets} module sets, ${statForkedAvailableModules} forked, ${statForkedAvailableModulesCount} + ${statForkedAvailableModulesCountPlus} modules forked, ${statForkedMergedModulesCount} + ${statForkedMergedModulesCountPlus} modules merged into fork, ${statForkedResultModulesCount} resulting modules)`
);
logger.log(
`${statChunkGroupInfoUpdated} chunk group info updated (${statChildChunkGroupsReconnected} already connected chunk groups reconnected)`
);
};
/**
*
* @param {Compilation} compilation the compilation
* @param {Set<DependenciesBlock>} blocksWithNestedBlocks flag for blocks that have nested blocks
* @param {Map<AsyncDependenciesBlock, BlockChunkGroupConnection[]>} blockConnections connection for blocks
* @param {Map<ChunkGroup, ChunkGroupInfo>} chunkGroupInfoMap mapping from chunk group to available modules
*/
const connectChunkGroups = (
compilation,
blocksWithNestedBlocks,
blockConnections,
chunkGroupInfoMap
) => {
const { chunkGraph } = compilation;
/**
* Helper function to check if all modules of a chunk are available
*
* @param {ChunkGroup} chunkGroup the chunkGroup to scan
* @param {ModuleSetPlus} availableModules the comparator set
* @returns {boolean} return true if all modules of a chunk are available
*/
const areModulesAvailable = (chunkGroup, availableModules) => {
for (const chunk of chunkGroup.chunks) {
for (const module of chunkGraph.getChunkModulesIterable(chunk)) {
if (!availableModules.has(module) && !availableModules.plus.has(module))
return false;
}
}
return true;
};
// For each edge in the basic chunk graph
for (const [block, connections] of blockConnections) {
// 1. Check if connection is needed
// When none of the dependencies need to be connected
// we can skip all of them
// It's not possible to filter each item so it doesn't create inconsistent
// connections and modules can only create one version
// TODO maybe decide this per runtime
if (
// TODO is this needed?
!blocksWithNestedBlocks.has(block) &&
connections.every(({ chunkGroup, originChunkGroupInfo }) =>
areModulesAvailable(
chunkGroup,
originChunkGroupInfo.resultingAvailableModules
)
)
) {
continue;
}
// 2. Foreach edge
for (let i = 0; i < connections.length; i++) {
const { chunkGroup, originChunkGroupInfo } = connections[i];
// 3. Connect block with chunk
chunkGraph.connectBlockAndChunkGroup(block, chunkGroup);
// 4. Connect chunk with parent
connectChunkGroupParentAndChild(
originChunkGroupInfo.chunkGroup,
chunkGroup
);
}
}
};
/**
* Remove all unconnected chunk groups
* @param {Compilation} compilation the compilation
* @param {Iterable<ChunkGroup>} allCreatedChunkGroups all chunk groups that where created before
*/
const cleanupUnconnectedGroups = (compilation, allCreatedChunkGroups) => {
const { chunkGraph } = compilation;
for (const chunkGroup of allCreatedChunkGroups) {
if (chunkGroup.getNumberOfParents() === 0) {
for (const chunk of chunkGroup.chunks) {
compilation.chunks.delete(chunk);
chunkGraph.disconnectChunk(chunk);
}
chunkGraph.disconnectChunkGroup(chunkGroup);
chunkGroup.remove();
}
}
};
/**
* This method creates the Chunk graph from the Module graph
* @param {Compilation} compilation the compilation
* @param {Map<Entrypoint, Module[]>} inputEntrypointsAndModules chunk groups which are processed with the modules
* @returns {void}
*/
const buildChunkGraph = (compilation, inputEntrypointsAndModules) => {
const logger = compilation.getLogger("webpack.buildChunkGraph");
// SHARED STATE
/** @type {Map<AsyncDependenciesBlock, BlockChunkGroupConnection[]>} */
const blockConnections = new Map();
/** @type {Set<ChunkGroup>} */
const allCreatedChunkGroups = new Set();
/** @type {Map<ChunkGroup, ChunkGroupInfo>} */
const chunkGroupInfoMap = new Map();
/** @type {Set<DependenciesBlock>} */
const blocksWithNestedBlocks = new Set();
// PART ONE
logger.time("visitModules");
visitModules(
logger,
compilation,
inputEntrypointsAndModules,
chunkGroupInfoMap,
blockConnections,
blocksWithNestedBlocks,
allCreatedChunkGroups
);
logger.timeEnd("visitModules");
// PART TWO
logger.time("connectChunkGroups");
connectChunkGroups(
compilation,
blocksWithNestedBlocks,
blockConnections,
chunkGroupInfoMap
);
logger.timeEnd("connectChunkGroups");
for (const [chunkGroup, chunkGroupInfo] of chunkGroupInfoMap) {
for (const chunk of chunkGroup.chunks)
chunk.runtime = mergeRuntime(chunk.runtime, chunkGroupInfo.runtime);
}
// Cleanup work
logger.time("cleanup");
cleanupUnconnectedGroups(compilation, allCreatedChunkGroups);
logger.timeEnd("cleanup");
};
module.exports = buildChunkGraph;