const UnicodeTrie = require('./'); const pako = require('pako'); const { swap32LE } = require('./swap'); // Shift size for getting the index-1 table offset. const SHIFT_1 = 6 + 5; // Shift size for getting the index-2 table offset. const SHIFT_2 = 5; // Difference between the two shift sizes, // for getting an index-1 offset from an index-2 offset. 6=11-5 const SHIFT_1_2 = SHIFT_1 - SHIFT_2; // Number of index-1 entries for the BMP. 32=0x20 // This part of the index-1 table is omitted from the serialized form. const OMITTED_BMP_INDEX_1_LENGTH = 0x10000 >> SHIFT_1; // Number of code points per index-1 table entry. 2048=0x800 const CP_PER_INDEX_1_ENTRY = 1 << SHIFT_1; // Number of entries in an index-2 block. 64=0x40 const INDEX_2_BLOCK_LENGTH = 1 << SHIFT_1_2; // Mask for getting the lower bits for the in-index-2-block offset. */ const INDEX_2_MASK = INDEX_2_BLOCK_LENGTH - 1; // Number of entries in a data block. 32=0x20 const DATA_BLOCK_LENGTH = 1 << SHIFT_2; // Mask for getting the lower bits for the in-data-block offset. const DATA_MASK = DATA_BLOCK_LENGTH - 1; // Shift size for shifting left the index array values. // Increases possible data size with 16-bit index values at the cost // of compactability. // This requires data blocks to be aligned by DATA_GRANULARITY. const INDEX_SHIFT = 2; // The alignment size of a data block. Also the granularity for compaction. const DATA_GRANULARITY = 1 << INDEX_SHIFT; // The BMP part of the index-2 table is fixed and linear and starts at offset 0. // Length=2048=0x800=0x10000>>SHIFT_2. const INDEX_2_OFFSET = 0; // The part of the index-2 table for U+D800..U+DBFF stores values for // lead surrogate code _units_ not code _points_. // Values for lead surrogate code _points_ are indexed with this portion of the table. // Length=32=0x20=0x400>>SHIFT_2. (There are 1024=0x400 lead surrogates.) const LSCP_INDEX_2_OFFSET = 0x10000 >> SHIFT_2; const LSCP_INDEX_2_LENGTH = 0x400 >> SHIFT_2; // Count the lengths of both BMP pieces. 2080=0x820 const INDEX_2_BMP_LENGTH = LSCP_INDEX_2_OFFSET + LSCP_INDEX_2_LENGTH; // The 2-byte UTF-8 version of the index-2 table follows at offset 2080=0x820. // Length 32=0x20 for lead bytes C0..DF, regardless of SHIFT_2. const UTF8_2B_INDEX_2_OFFSET = INDEX_2_BMP_LENGTH; const UTF8_2B_INDEX_2_LENGTH = 0x800 >> 6; // U+0800 is the first code point after 2-byte UTF-8 // The index-1 table, only used for supplementary code points, at offset 2112=0x840. // Variable length, for code points up to highStart, where the last single-value range starts. // Maximum length 512=0x200=0x100000>>SHIFT_1. // (For 0x100000 supplementary code points U+10000..U+10ffff.) // // The part of the index-2 table for supplementary code points starts // after this index-1 table. // // Both the index-1 table and the following part of the index-2 table // are omitted completely if there is only BMP data. const INDEX_1_OFFSET = UTF8_2B_INDEX_2_OFFSET + UTF8_2B_INDEX_2_LENGTH; const MAX_INDEX_1_LENGTH = 0x100000 >> SHIFT_1; // The illegal-UTF-8 data block follows the ASCII block, at offset 128=0x80. // Used with linear access for single bytes 0..0xbf for simple error handling. // Length 64=0x40, not DATA_BLOCK_LENGTH. const BAD_UTF8_DATA_OFFSET = 0x80; // The start of non-linear-ASCII data blocks, at offset 192=0xc0. // !!!! const DATA_START_OFFSET = 0xc0; // The null data block. // Length 64=0x40 even if DATA_BLOCK_LENGTH is smaller, // to work with 6-bit trail bytes from 2-byte UTF-8. const DATA_NULL_OFFSET = DATA_START_OFFSET; // The start of allocated data blocks. const NEW_DATA_START_OFFSET = DATA_NULL_OFFSET + 0x40; // The start of data blocks for U+0800 and above. // Below, compaction uses a block length of 64 for 2-byte UTF-8. // From here on, compaction uses DATA_BLOCK_LENGTH. // Data values for 0x780 code points beyond ASCII. const DATA_0800_OFFSET = NEW_DATA_START_OFFSET + 0x780; // Start with allocation of 16k data entries. */ const INITIAL_DATA_LENGTH = 1 << 14; // Grow about 8x each time. const MEDIUM_DATA_LENGTH = 1 << 17; // Maximum length of the runtime data array. // Limited by 16-bit index values that are left-shifted by INDEX_SHIFT, // and by uint16_t UTrie2Header.shiftedDataLength. const MAX_DATA_LENGTH_RUNTIME = 0xffff << INDEX_SHIFT; const INDEX_1_LENGTH = 0x110000 >> SHIFT_1; // Maximum length of the build-time data array. // One entry per 0x110000 code points, plus the illegal-UTF-8 block and the null block, // plus values for the 0x400 surrogate code units. const MAX_DATA_LENGTH_BUILDTIME = 0x110000 + 0x40 + 0x40 + 0x400; // At build time, leave a gap in the index-2 table, // at least as long as the maximum lengths of the 2-byte UTF-8 index-2 table // and the supplementary index-1 table. // Round up to INDEX_2_BLOCK_LENGTH for proper compacting. const INDEX_GAP_OFFSET = INDEX_2_BMP_LENGTH; const INDEX_GAP_LENGTH = ((UTF8_2B_INDEX_2_LENGTH + MAX_INDEX_1_LENGTH) + INDEX_2_MASK) & ~INDEX_2_MASK; // Maximum length of the build-time index-2 array. // Maximum number of Unicode code points (0x110000) shifted right by SHIFT_2, // plus the part of the index-2 table for lead surrogate code points, // plus the build-time index gap, // plus the null index-2 block.) const MAX_INDEX_2_LENGTH = (0x110000 >> SHIFT_2) + LSCP_INDEX_2_LENGTH + INDEX_GAP_LENGTH + INDEX_2_BLOCK_LENGTH; // The null index-2 block, following the gap in the index-2 table. const INDEX_2_NULL_OFFSET = INDEX_GAP_OFFSET + INDEX_GAP_LENGTH; // The start of allocated index-2 blocks. const INDEX_2_START_OFFSET = INDEX_2_NULL_OFFSET + INDEX_2_BLOCK_LENGTH; // Maximum length of the runtime index array. // Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. // (The actual maximum length is lower, // (0x110000>>SHIFT_2)+UTF8_2B_INDEX_2_LENGTH+MAX_INDEX_1_LENGTH.) const MAX_INDEX_LENGTH = 0xffff; const equal_int = (a, s, t, length) => { for (let i = 0; i < length; i++) { if (a[s + i] !== a[t + i]) { return false; } } return true; }; class UnicodeTrieBuilder { constructor(initialValue, errorValue) { let i, j; if (initialValue == null) { initialValue = 0; } this.initialValue = initialValue; if (errorValue == null) { errorValue = 0; } this.errorValue = errorValue; this.index1 = new Int32Array(INDEX_1_LENGTH); this.index2 = new Int32Array(MAX_INDEX_2_LENGTH); this.highStart = 0x110000; this.data = new Uint32Array(INITIAL_DATA_LENGTH); this.dataCapacity = INITIAL_DATA_LENGTH; this.firstFreeBlock = 0; this.isCompacted = false; // Multi-purpose per-data-block table. // // Before compacting: // // Per-data-block reference counters/free-block list. // 0: unused // >0: reference counter (number of index-2 entries pointing here) // <0: next free data block in free-block list // // While compacting: // // Map of adjusted indexes, used in compactData() and compactIndex2(). // Maps from original indexes to new ones. this.map = new Int32Array(MAX_DATA_LENGTH_BUILDTIME >> SHIFT_2); for (i = 0; i < 0x80; i++) { this.data[i] = this.initialValue; } for (i = i; i < 0xc0; i++) { this.data[i] = this.errorValue; } for (i = DATA_NULL_OFFSET; i < NEW_DATA_START_OFFSET; i++) { this.data[i] = this.initialValue; } this.dataNullOffset = DATA_NULL_OFFSET; this.dataLength = NEW_DATA_START_OFFSET; // set the index-2 indexes for the 2=0x80>>SHIFT_2 ASCII data blocks i = 0; for (j = 0; j < 0x80; j += DATA_BLOCK_LENGTH) { this.index2[i] = j; this.map[i++] = 1; } // reference counts for the bad-UTF-8-data block for (j = j; j < 0xc0; j += DATA_BLOCK_LENGTH) { this.map[i++] = 0; } // Reference counts for the null data block: all blocks except for the ASCII blocks. // Plus 1 so that we don't drop this block during compaction. // Plus as many as needed for lead surrogate code points. // i==newTrie->dataNullOffset this.map[i++] = ((0x110000 >> SHIFT_2) - (0x80 >> SHIFT_2)) + 1 + LSCP_INDEX_2_LENGTH; j += DATA_BLOCK_LENGTH; for (j = j; j < NEW_DATA_START_OFFSET; j += DATA_BLOCK_LENGTH) { this.map[i++] = 0; } // set the remaining indexes in the BMP index-2 block // to the null data block for (i = 0x80 >> SHIFT_2; i < INDEX_2_BMP_LENGTH; i++) { this.index2[i] = DATA_NULL_OFFSET; } // Fill the index gap with impossible values so that compaction // does not overlap other index-2 blocks with the gap. for (i = 0; i < INDEX_GAP_LENGTH; i++) { this.index2[INDEX_GAP_OFFSET + i] = -1; } // set the indexes in the null index-2 block for (i = 0; i < INDEX_2_BLOCK_LENGTH; i++) { this.index2[INDEX_2_NULL_OFFSET + i] = DATA_NULL_OFFSET; } this.index2NullOffset = INDEX_2_NULL_OFFSET; this.index2Length = INDEX_2_START_OFFSET; // set the index-1 indexes for the linear index-2 block j = 0; for (i = 0; i < OMITTED_BMP_INDEX_1_LENGTH; i++) { this.index1[i] = j; j += INDEX_2_BLOCK_LENGTH; } // set the remaining index-1 indexes to the null index-2 block for (i = i; i < INDEX_1_LENGTH; i++) { this.index1[i] = INDEX_2_NULL_OFFSET; } // Preallocate and reset data for U+0080..U+07ff, // for 2-byte UTF-8 which will be compacted in 64-blocks // even if DATA_BLOCK_LENGTH is smaller. for (i = 0x80; i < 0x800; i += DATA_BLOCK_LENGTH) { this.set(i, this.initialValue); } } set(codePoint, value) { if ((codePoint < 0) || (codePoint > 0x10ffff)) { throw new Error('Invalid code point'); } if (this.isCompacted) { throw new Error('Already compacted'); } const block = this._getDataBlock(codePoint, true); this.data[block + (codePoint & DATA_MASK)] = value; return this; } setRange(start, end, value, overwrite) { let block, repeatBlock; if (overwrite == null) { overwrite = true; } if ((start > 0x10ffff) || (end > 0x10ffff) || (start > end)) { throw new Error('Invalid code point'); } if (this.isCompacted) { throw new Error('Already compacted'); } if (!overwrite && (value === this.initialValue)) { return this; // nothing to do } let limit = end + 1; if ((start & DATA_MASK) !== 0) { // set partial block at [start..following block boundary block = this._getDataBlock(start, true); const nextStart = (start + DATA_BLOCK_LENGTH) & ~DATA_MASK; if (nextStart <= limit) { this._fillBlock(block, start & DATA_MASK, DATA_BLOCK_LENGTH, value, this.initialValue, overwrite); start = nextStart; } else { this._fillBlock(block, start & DATA_MASK, limit & DATA_MASK, value, this.initialValue, overwrite); return this; } } // number of positions in the last, partial block const rest = limit & DATA_MASK; // round down limit to a block boundary limit &= ~DATA_MASK; // iterate over all-value blocks if (value === this.initialValue) { repeatBlock = this.dataNullOffset; } else { repeatBlock = -1; } while (start < limit) { let setRepeatBlock = false; if ((value === this.initialValue) && this._isInNullBlock(start, true)) { start += DATA_BLOCK_LENGTH; // nothing to do continue; } // get index value let i2 = this._getIndex2Block(start, true); i2 += (start >> SHIFT_2) & INDEX_2_MASK; block = this.index2[i2]; if (this._isWritableBlock(block)) { // already allocated if (overwrite && (block >= DATA_0800_OFFSET)) { // We overwrite all values, and it's not a // protected (ASCII-linear or 2-byte UTF-8) block: // replace with the repeatBlock. setRepeatBlock = true; } else { // protected block: just write the values into this block this._fillBlock(block, 0, DATA_BLOCK_LENGTH, value, this.initialValue, overwrite); } } else if ((this.data[block] !== value) && (overwrite || (block === this.dataNullOffset))) { // Set the repeatBlock instead of the null block or previous repeat block: // // If !isWritableBlock() then all entries in the block have the same value // because it's the null block or a range block (the repeatBlock from a previous // call to utrie2_setRange32()). // No other blocks are used multiple times before compacting. // // The null block is the only non-writable block with the initialValue because // of the repeatBlock initialization above. (If value==initialValue, then // the repeatBlock will be the null data block.) // // We set our repeatBlock if the desired value differs from the block's value, // and if we overwrite any data or if the data is all initial values // (which is the same as the block being the null block, see above). setRepeatBlock = true; } if (setRepeatBlock) { if (repeatBlock >= 0) { this._setIndex2Entry(i2, repeatBlock); } else { // create and set and fill the repeatBlock repeatBlock = this._getDataBlock(start, true); this._writeBlock(repeatBlock, value); } } start += DATA_BLOCK_LENGTH; } if (rest > 0) { // set partial block at [last block boundary..limit block = this._getDataBlock(start, true); this._fillBlock(block, 0, rest, value, this.initialValue, overwrite); } return this; } get(c, fromLSCP) { let i2; if (fromLSCP == null) { fromLSCP = true; } if ((c < 0) || (c > 0x10ffff)) { return this.errorValue; } if ((c >= this.highStart) && (!((c >= 0xd800) && (c < 0xdc00)) || fromLSCP)) { return this.data[this.dataLength - DATA_GRANULARITY]; } if (((c >= 0xd800) && (c < 0xdc00)) && fromLSCP) { i2 = (LSCP_INDEX_2_OFFSET - (0xd800 >> SHIFT_2)) + (c >> SHIFT_2); } else { i2 = this.index1[c >> SHIFT_1] + ((c >> SHIFT_2) & INDEX_2_MASK); } const block = this.index2[i2]; return this.data[block + (c & DATA_MASK)]; } _isInNullBlock(c, forLSCP) { let i2; if (((c & 0xfffffc00) === 0xd800) && forLSCP) { i2 = (LSCP_INDEX_2_OFFSET - (0xd800 >> SHIFT_2)) + (c >> SHIFT_2); } else { i2 = this.index1[c >> SHIFT_1] + ((c >> SHIFT_2) & INDEX_2_MASK); } const block = this.index2[i2]; return block === this.dataNullOffset; } _allocIndex2Block() { const newBlock = this.index2Length; const newTop = newBlock + INDEX_2_BLOCK_LENGTH; if (newTop > this.index2.length) { // Should never occur. // Either MAX_BUILD_TIME_INDEX_LENGTH is incorrect, // or the code writes more values than should be possible. throw new Error("Internal error in Trie2 creation."); } this.index2Length = newTop; this.index2.set(this.index2.subarray(this.index2NullOffset, this.index2NullOffset + INDEX_2_BLOCK_LENGTH), newBlock); return newBlock; } _getIndex2Block(c, forLSCP) { if ((c >= 0xd800) && (c < 0xdc00) && forLSCP) { return LSCP_INDEX_2_OFFSET; } const i1 = c >> SHIFT_1; let i2 = this.index1[i1]; if (i2 === this.index2NullOffset) { i2 = this._allocIndex2Block(); this.index1[i1] = i2; } return i2; } _isWritableBlock(block) { return (block !== this.dataNullOffset) && (this.map[block >> SHIFT_2] === 1); } _allocDataBlock(copyBlock) { let newBlock; if (this.firstFreeBlock !== 0) { // get the first free block newBlock = this.firstFreeBlock; this.firstFreeBlock = -this.map[newBlock >> SHIFT_2]; } else { // get a new block from the high end newBlock = this.dataLength; const newTop = newBlock + DATA_BLOCK_LENGTH; if (newTop > this.dataCapacity) { // out of memory in the data array let capacity; if (this.dataCapacity < MEDIUM_DATA_LENGTH) { capacity = MEDIUM_DATA_LENGTH; } else if (this.dataCapacity < MAX_DATA_LENGTH_BUILDTIME) { capacity = MAX_DATA_LENGTH_BUILDTIME; } else { // Should never occur. // Either MAX_DATA_LENGTH_BUILDTIME is incorrect, // or the code writes more values than should be possible. throw new Error("Internal error in Trie2 creation."); } const newData = new Uint32Array(capacity); newData.set(this.data.subarray(0, this.dataLength)); this.data = newData; this.dataCapacity = capacity; } this.dataLength = newTop; } this.data.set(this.data.subarray(copyBlock, copyBlock + DATA_BLOCK_LENGTH), newBlock); this.map[newBlock >> SHIFT_2] = 0; return newBlock; } _releaseDataBlock(block) { // put this block at the front of the free-block chain this.map[block >> SHIFT_2] = -this.firstFreeBlock; this.firstFreeBlock = block; } _setIndex2Entry(i2, block) { ++this.map[block >> SHIFT_2]; // increment first, in case block == oldBlock! const oldBlock = this.index2[i2]; if (--this.map[oldBlock >> SHIFT_2] === 0) { this._releaseDataBlock(oldBlock); } this.index2[i2] = block; } _getDataBlock(c, forLSCP) { let i2 = this._getIndex2Block(c, forLSCP); i2 += (c >> SHIFT_2) & INDEX_2_MASK; const oldBlock = this.index2[i2]; if (this._isWritableBlock(oldBlock)) { return oldBlock; } // allocate a new data block const newBlock = this._allocDataBlock(oldBlock); this._setIndex2Entry(i2, newBlock); return newBlock; } _fillBlock(block, start, limit, value, initialValue, overwrite) { let i; if (overwrite) { for (i = block + start; i < block + limit; i++) { this.data[i] = value; } } else { for (i = block + start; i < block + limit; i++) { if (this.data[i] === initialValue) { this.data[i] = value; } } } } _writeBlock(block, value) { const limit = block + DATA_BLOCK_LENGTH; while (block < limit) { this.data[block++] = value; } } _findHighStart(highValue) { let prevBlock, prevI2Block; const data32 = this.data; const { initialValue } = this; const { index2NullOffset } = this; const nullBlock = this.dataNullOffset; // set variables for previous range if (highValue === initialValue) { prevI2Block = index2NullOffset; prevBlock = nullBlock; } else { prevI2Block = -1; prevBlock = -1; } const prev = 0x110000; // enumerate index-2 blocks let i1 = INDEX_1_LENGTH; let c = prev; while (c > 0) { const i2Block = this.index1[--i1]; if (i2Block === prevI2Block) { // the index-2 block is the same as the previous one, and filled with highValue c -= CP_PER_INDEX_1_ENTRY; continue; } prevI2Block = i2Block; if (i2Block === index2NullOffset) { // this is the null index-2 block if (highValue !== initialValue) { return c; } c -= CP_PER_INDEX_1_ENTRY; } else { // enumerate data blocks for one index-2 block let i2 = INDEX_2_BLOCK_LENGTH; while (i2 > 0) { const block = this.index2[i2Block + --i2]; if (block === prevBlock) { // the block is the same as the previous one, and filled with highValue c -= DATA_BLOCK_LENGTH; continue; } prevBlock = block; if (block === nullBlock) { // this is the null data block if (highValue !== initialValue) { return c; } c -= DATA_BLOCK_LENGTH; } else { let j = DATA_BLOCK_LENGTH; while (j > 0) { const value = data32[block + --j]; if (value !== highValue) { return c; } --c; } } } } } // deliver last range return 0; } _findSameDataBlock(dataLength, otherBlock, blockLength) { // ensure that we do not even partially get past dataLength dataLength -= blockLength; let block = 0; while (block <= dataLength) { if (equal_int(this.data, block, otherBlock, blockLength)) { return block; } block += DATA_GRANULARITY; } return -1; } _findSameIndex2Block(index2Length, otherBlock) { // ensure that we do not even partially get past index2Length index2Length -= INDEX_2_BLOCK_LENGTH; for (let block = 0; block <= index2Length; block++) { if (equal_int(this.index2, block, otherBlock, INDEX_2_BLOCK_LENGTH)) { return block; } } return -1; } _compactData() { // do not compact linear-ASCII data let newStart = DATA_START_OFFSET; let start = 0; let i = 0; while (start < newStart) { this.map[i++] = start; start += DATA_BLOCK_LENGTH; } // Start with a block length of 64 for 2-byte UTF-8, // then switch to DATA_BLOCK_LENGTH. let blockLength = 64; let blockCount = blockLength >> SHIFT_2; start = newStart; while (start < this.dataLength) { // start: index of first entry of current block // newStart: index where the current block is to be moved // (right after current end of already-compacted data) var mapIndex, movedStart; if (start === DATA_0800_OFFSET) { blockLength = DATA_BLOCK_LENGTH; blockCount = 1; } // skip blocks that are not used if (this.map[start >> SHIFT_2] <= 0) { // advance start to the next block start += blockLength; // leave newStart with the previous block! continue; } // search for an identical block if ((movedStart = this._findSameDataBlock(newStart, start, blockLength)) >= 0) { // found an identical block, set the other block's index value for the current block mapIndex = start >> SHIFT_2; for (i = blockCount; i > 0; i--) { this.map[mapIndex++] = movedStart; movedStart += DATA_BLOCK_LENGTH; } // advance start to the next block start += blockLength; // leave newStart with the previous block! continue; } // see if the beginning of this block can be overlapped with the end of the previous block // look for maximum overlap (modulo granularity) with the previous, adjacent block let overlap = blockLength - DATA_GRANULARITY; while ((overlap > 0) && !equal_int(this.data, (newStart - overlap), start, overlap)) { overlap -= DATA_GRANULARITY; } if ((overlap > 0) || (newStart < start)) { // some overlap, or just move the whole block movedStart = newStart - overlap; mapIndex = start >> SHIFT_2; for (i = blockCount; i > 0; i--) { this.map[mapIndex++] = movedStart; movedStart += DATA_BLOCK_LENGTH; } // move the non-overlapping indexes to their new positions start += overlap; for (i = blockLength - overlap; i > 0; i--) { this.data[newStart++] = this.data[start++]; } } else { // no overlap && newStart==start mapIndex = start >> SHIFT_2; for (i = blockCount; i > 0; i--) { this.map[mapIndex++] = start; start += DATA_BLOCK_LENGTH; } newStart = start; } } // now adjust the index-2 table i = 0; while (i < this.index2Length) { // Gap indexes are invalid (-1). Skip over the gap. if (i === INDEX_GAP_OFFSET) { i += INDEX_GAP_LENGTH; } this.index2[i] = this.map[this.index2[i] >> SHIFT_2]; ++i; } this.dataNullOffset = this.map[this.dataNullOffset >> SHIFT_2]; // ensure dataLength alignment while ((newStart & (DATA_GRANULARITY - 1)) !== 0) { this.data[newStart++] = this.initialValue; } this.dataLength = newStart; } _compactIndex2() { // do not compact linear-BMP index-2 blocks let newStart = INDEX_2_BMP_LENGTH; let start = 0; let i = 0; while (start < newStart) { this.map[i++] = start; start += INDEX_2_BLOCK_LENGTH; } // Reduce the index table gap to what will be needed at runtime. newStart += UTF8_2B_INDEX_2_LENGTH + ((this.highStart - 0x10000) >> SHIFT_1); start = INDEX_2_NULL_OFFSET; while (start < this.index2Length) { // start: index of first entry of current block // newStart: index where the current block is to be moved // (right after current end of already-compacted data) // search for an identical block var movedStart; if ((movedStart = this._findSameIndex2Block(newStart, start)) >= 0) { // found an identical block, set the other block's index value for the current block this.map[start >> SHIFT_1_2] = movedStart; // advance start to the next block start += INDEX_2_BLOCK_LENGTH; // leave newStart with the previous block! continue; } // see if the beginning of this block can be overlapped with the end of the previous block // look for maximum overlap with the previous, adjacent block let overlap = INDEX_2_BLOCK_LENGTH - 1; while ((overlap > 0) && !equal_int(this.index2, (newStart - overlap), start, overlap)) { --overlap; } if ((overlap > 0) || (newStart < start)) { // some overlap, or just move the whole block this.map[start >> SHIFT_1_2] = newStart - overlap; // move the non-overlapping indexes to their new positions start += overlap; for (i = INDEX_2_BLOCK_LENGTH - overlap; i > 0; i--) { this.index2[newStart++] = this.index2[start++]; } } else { // no overlap && newStart==start this.map[start >> SHIFT_1_2] = start; start += INDEX_2_BLOCK_LENGTH; newStart = start; } } // now adjust the index-1 table for (i = 0; i < INDEX_1_LENGTH; i++) { this.index1[i] = this.map[this.index1[i] >> SHIFT_1_2]; } this.index2NullOffset = this.map[this.index2NullOffset >> SHIFT_1_2]; // Ensure data table alignment: // Needs to be granularity-aligned for 16-bit trie // (so that dataMove will be down-shiftable), // and 2-aligned for uint32_t data. // Arbitrary value: 0x3fffc not possible for real data. while ((newStart & ((DATA_GRANULARITY - 1) | 1)) !== 0) { this.index2[newStart++] = 0x0000ffff << INDEX_SHIFT; } this.index2Length = newStart; } _compact() { // find highStart and round it up let highValue = this.get(0x10ffff); let highStart = this._findHighStart(highValue); highStart = (highStart + (CP_PER_INDEX_1_ENTRY - 1)) & ~(CP_PER_INDEX_1_ENTRY - 1); if (highStart === 0x110000) { highValue = this.errorValue; } // Set trie->highStart only after utrie2_get32(trie, highStart). // Otherwise utrie2_get32(trie, highStart) would try to read the highValue. this.highStart = highStart; if (this.highStart < 0x110000) { // Blank out [highStart..10ffff] to release associated data blocks. const suppHighStart = this.highStart <= 0x10000 ? 0x10000 : this.highStart; this.setRange(suppHighStart, 0x10ffff, this.initialValue, true); } this._compactData(); if (this.highStart > 0x10000) { this._compactIndex2(); } // Store the highValue in the data array and round up the dataLength. // Must be done after compactData() because that assumes that dataLength // is a multiple of DATA_BLOCK_LENGTH. this.data[this.dataLength++] = highValue; while ((this.dataLength & (DATA_GRANULARITY - 1)) !== 0) { this.data[this.dataLength++] = this.initialValue; } this.isCompacted = true; } freeze() { let allIndexesLength, i; if (!this.isCompacted) { this._compact(); } if (this.highStart <= 0x10000) { allIndexesLength = INDEX_1_OFFSET; } else { allIndexesLength = this.index2Length; } const dataMove = allIndexesLength; // are indexLength and dataLength within limits? if ((allIndexesLength > MAX_INDEX_LENGTH) || // for unshifted indexLength ((dataMove + this.dataNullOffset) > 0xffff) || // for unshifted dataNullOffset ((dataMove + DATA_0800_OFFSET) > 0xffff) || // for unshifted 2-byte UTF-8 index-2 values ((dataMove + this.dataLength) > MAX_DATA_LENGTH_RUNTIME)) { // for shiftedDataLength throw new Error("Trie data is too large."); } // calculate the sizes of, and allocate, the index and data arrays const indexLength = allIndexesLength + this.dataLength; const data = new Int32Array(indexLength); // write the index-2 array values shifted right by INDEX_SHIFT, after adding dataMove let destIdx = 0; for (i = 0; i < INDEX_2_BMP_LENGTH; i++) { data[destIdx++] = ((this.index2[i] + dataMove) >> INDEX_SHIFT); } // write UTF-8 2-byte index-2 values, not right-shifted for (i = 0; i < 0xc2 - 0xc0; i++) { // C0..C1 data[destIdx++] = (dataMove + BAD_UTF8_DATA_OFFSET); } for (i = i; i < 0xe0 - 0xc0; i++) { // C2..DF data[destIdx++] = (dataMove + this.index2[i << (6 - SHIFT_2)]); } if (this.highStart > 0x10000) { const index1Length = (this.highStart - 0x10000) >> SHIFT_1; const index2Offset = INDEX_2_BMP_LENGTH + UTF8_2B_INDEX_2_LENGTH + index1Length; // write 16-bit index-1 values for supplementary code points for (i = 0; i < index1Length; i++) { data[destIdx++] = (INDEX_2_OFFSET + this.index1[i + OMITTED_BMP_INDEX_1_LENGTH]); } // write the index-2 array values for supplementary code points, // shifted right by INDEX_SHIFT, after adding dataMove for (i = 0; i < this.index2Length - index2Offset; i++) { data[destIdx++] = ((dataMove + this.index2[index2Offset + i]) >> INDEX_SHIFT); } } // write 16-bit data values for (i = 0; i < this.dataLength; i++) { data[destIdx++] = this.data[i]; } const dest = new UnicodeTrie({ data, highStart: this.highStart, errorValue: this.errorValue }); return dest; } // Generates a Buffer containing the serialized and compressed trie. // Trie data is compressed twice using the deflate algorithm to minimize file size. // Format: // uint32_t highStart; // uint32_t errorValue; // uint32_t uncompressedDataLength; // uint8_t trieData[dataLength]; toBuffer() { const trie = this.freeze(); const data = new Uint8Array(trie.data.buffer); // swap bytes to little-endian swap32LE(data); let compressed = pako.deflateRaw(data); compressed = pako.deflateRaw(compressed); const buf = Buffer.alloc(compressed.length + 12); buf.writeUInt32LE(trie.highStart, 0); buf.writeUInt32LE(trie.errorValue, 4); buf.writeUInt32LE(data.length, 8); for (let i = 0; i < compressed.length; i++) { const b = compressed[i]; buf[i + 12] = b; } return buf; } } module.exports = UnicodeTrieBuilder;