/*eslint no-unused-vars: ["error", {"args": "none"}]*/ /*eslint no-redeclare: "off"*/ 'use strict'; /* qr.js -- QR code generator in Javascript (revision 2011-01-19) * Written by Kang Seonghoon . * * This source code is in the public domain; if your jurisdiction does not * recognize the public domain the terms of Creative Commons CC0 license * apply. In the other words, you can always do what you want. */ // per-version information (cf. JIS X 0510:2004 pp. 30--36, 71) // // [0]: the degree of generator polynomial by ECC levels // [1]: # of code blocks by ECC levels // [2]: left-top positions of alignment patterns // // the number in this table (in particular, [0]) does not exactly match with // the numbers in the specficiation. see augumenteccs below for the reason. var VERSIONS = [ null, [[10, 7, 17, 13], [1, 1, 1, 1], []], [[16, 10, 28, 22], [1, 1, 1, 1], [4, 16]], [[26, 15, 22, 18], [1, 1, 2, 2], [4, 20]], [[18, 20, 16, 26], [2, 1, 4, 2], [4, 24]], [[24, 26, 22, 18], [2, 1, 4, 4], [4, 28]], [[16, 18, 28, 24], [4, 2, 4, 4], [4, 32]], [[18, 20, 26, 18], [4, 2, 5, 6], [4, 20, 36]], [[22, 24, 26, 22], [4, 2, 6, 6], [4, 22, 40]], [[22, 30, 24, 20], [5, 2, 8, 8], [4, 24, 44]], [[26, 18, 28, 24], [5, 4, 8, 8], [4, 26, 48]], [[30, 20, 24, 28], [5, 4, 11, 8], [4, 28, 52]], [[22, 24, 28, 26], [8, 4, 11, 10], [4, 30, 56]], [[22, 26, 22, 24], [9, 4, 16, 12], [4, 32, 60]], [[24, 30, 24, 20], [9, 4, 16, 16], [4, 24, 44, 64]], [[24, 22, 24, 30], [10, 6, 18, 12], [4, 24, 46, 68]], [[28, 24, 30, 24], [10, 6, 16, 17], [4, 24, 48, 72]], [[28, 28, 28, 28], [11, 6, 19, 16], [4, 28, 52, 76]], [[26, 30, 28, 28], [13, 6, 21, 18], [4, 28, 54, 80]], [[26, 28, 26, 26], [14, 7, 25, 21], [4, 28, 56, 84]], [[26, 28, 28, 30], [16, 8, 25, 20], [4, 32, 60, 88]], [[26, 28, 30, 28], [17, 8, 25, 23], [4, 26, 48, 70, 92]], [[28, 28, 24, 30], [17, 9, 34, 23], [4, 24, 48, 72, 96]], [[28, 30, 30, 30], [18, 9, 30, 25], [4, 28, 52, 76, 100]], [[28, 30, 30, 30], [20, 10, 32, 27], [4, 26, 52, 78, 104]], [[28, 26, 30, 30], [21, 12, 35, 29], [4, 30, 56, 82, 108]], [[28, 28, 30, 28], [23, 12, 37, 34], [4, 28, 56, 84, 112]], [[28, 30, 30, 30], [25, 12, 40, 34], [4, 32, 60, 88, 116]], [[28, 30, 30, 30], [26, 13, 42, 35], [4, 24, 48, 72, 96, 120]], [[28, 30, 30, 30], [28, 14, 45, 38], [4, 28, 52, 76, 100, 124]], [[28, 30, 30, 30], [29, 15, 48, 40], [4, 24, 50, 76, 102, 128]], [[28, 30, 30, 30], [31, 16, 51, 43], [4, 28, 54, 80, 106, 132]], [[28, 30, 30, 30], [33, 17, 54, 45], [4, 32, 58, 84, 110, 136]], [[28, 30, 30, 30], [35, 18, 57, 48], [4, 28, 56, 84, 112, 140]], [[28, 30, 30, 30], [37, 19, 60, 51], [4, 32, 60, 88, 116, 144]], [[28, 30, 30, 30], [38, 19, 63, 53], [4, 28, 52, 76, 100, 124, 148]], [[28, 30, 30, 30], [40, 20, 66, 56], [4, 22, 48, 74, 100, 126, 152]], [[28, 30, 30, 30], [43, 21, 70, 59], [4, 26, 52, 78, 104, 130, 156]], [[28, 30, 30, 30], [45, 22, 74, 62], [4, 30, 56, 82, 108, 134, 160]], [[28, 30, 30, 30], [47, 24, 77, 65], [4, 24, 52, 80, 108, 136, 164]], [[28, 30, 30, 30], [49, 25, 81, 68], [4, 28, 56, 84, 112, 140, 168]]]; // mode constants (cf. Table 2 in JIS X 0510:2004 p. 16) var MODE_TERMINATOR = 0; var MODE_NUMERIC = 1, MODE_ALPHANUMERIC = 2, MODE_OCTET = 4, MODE_KANJI = 8; // validation regexps var NUMERIC_REGEXP = /^\d*$/; var ALPHANUMERIC_REGEXP = /^[A-Za-z0-9 $%*+\-./:]*$/; var ALPHANUMERIC_OUT_REGEXP = /^[A-Z0-9 $%*+\-./:]*$/; // ECC levels (cf. Table 22 in JIS X 0510:2004 p. 45) var ECCLEVEL_L = 1, ECCLEVEL_M = 0, ECCLEVEL_Q = 3, ECCLEVEL_H = 2; // GF(2^8)-to-integer mapping with a reducing polynomial x^8+x^4+x^3+x^2+1 // invariant: GF256_MAP[GF256_INVMAP[i]] == i for all i in [1,256) var GF256_MAP = [], GF256_INVMAP = [-1]; for (var i = 0, v = 1; i < 255; ++i) { GF256_MAP.push(v); GF256_INVMAP[v] = i; v = (v * 2) ^ (v >= 128 ? 0x11d : 0); } // generator polynomials up to degree 30 // (should match with polynomials in JIS X 0510:2004 Appendix A) // // generator polynomial of degree K is product of (x-\alpha^0), (x-\alpha^1), // ..., (x-\alpha^(K-1)). by convention, we omit the K-th coefficient (always 1) // from the result; also other coefficients are written in terms of the exponent // to \alpha to avoid the redundant calculation. (see also calculateecc below.) var GF256_GENPOLY = [[]]; for (var i = 0; i < 30; ++i) { var prevpoly = GF256_GENPOLY[i], poly = []; for (var j = 0; j <= i; ++j) { var a = (j < i ? GF256_MAP[prevpoly[j]] : 0); var b = GF256_MAP[(i + (prevpoly[j - 1] || 0)) % 255]; poly.push(GF256_INVMAP[a ^ b]); } GF256_GENPOLY.push(poly); } // alphanumeric character mapping (cf. Table 5 in JIS X 0510:2004 p. 19) var ALPHANUMERIC_MAP = {}; for (var i = 0; i < 45; ++i) { ALPHANUMERIC_MAP['0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:'.charAt(i)] = i; } // mask functions in terms of row # and column # // (cf. Table 20 in JIS X 0510:2004 p. 42) /*jshint unused: false */ var MASKFUNCS = [ function (i, j) { return (i + j) % 2 === 0; }, function (i, j) { return i % 2 === 0; }, function (i, j) { return j % 3 === 0; }, function (i, j) { return (i + j) % 3 === 0; }, function (i, j) { return (((i / 2) | 0) + ((j / 3) | 0)) % 2 === 0; }, function (i, j) { return (i * j) % 2 + (i * j) % 3 === 0; }, function (i, j) { return ((i * j) % 2 + (i * j) % 3) % 2 === 0; }, function (i, j) { return ((i + j) % 2 + (i * j) % 3) % 2 === 0; }]; // returns true when the version information has to be embeded. var needsverinfo = function (ver) { return ver > 6; }; // returns the size of entire QR code for given version. var getsizebyver = function (ver) { return 4 * ver + 17; }; // returns the number of bits available for code words in this version. var nfullbits = function (ver) { /* * |<--------------- n --------------->| * | |<----- n-17 ---->| | * +-------+ ///+-------+ ---- * | | ///| | ^ * | 9x9 | @@@@@ ///| 9x8 | | * | | # # # @5x5@ # # # | | | * +-------+ @@@@@ +-------+ | * # ---| * ^ | * # | * @@@@@ @@@@@ @@@@@ | n * @5x5@ @5x5@ @5x5@ n-17 * @@@@@ @@@@@ @@@@@ | | * # | | * ////// v | * //////# ---| * +-------+ @@@@@ @@@@@ | * | | @5x5@ @5x5@ | * | 8x9 | @@@@@ @@@@@ | * | | v * +-------+ ---- * * when the entire code has n^2 modules and there are m^2-3 alignment * patterns, we have: * - 225 (= 9x9 + 9x8 + 8x9) modules for finder patterns and * format information; * - 2n-34 (= 2(n-17)) modules for timing patterns; * - 36 (= 3x6 + 6x3) modules for version information, if any; * - 25m^2-75 (= (m^2-3)(5x5)) modules for alignment patterns * if any, but 10m-20 (= 2(m-2)x5) of them overlaps with * timing patterns. */ var v = VERSIONS[ver]; var nbits = 16 * ver * ver + 128 * ver + 64; // finder, timing and format info. if (needsverinfo(ver)) nbits -= 36; // version information if (v[2].length) { // alignment patterns nbits -= 25 * v[2].length * v[2].length - 10 * v[2].length - 55; } return nbits; }; // returns the number of bits available for data portions (i.e. excludes ECC // bits but includes mode and length bits) in this version and ECC level. var ndatabits = function (ver, ecclevel) { var nbits = nfullbits(ver) & ~7; // no sub-octet code words var v = VERSIONS[ver]; nbits -= 8 * v[0][ecclevel] * v[1][ecclevel]; // ecc bits return nbits; }; // returns the number of bits required for the length of data. // (cf. Table 3 in JIS X 0510:2004 p. 16) var ndatalenbits = function (ver, mode) { switch (mode) { case MODE_NUMERIC: return (ver < 10 ? 10 : ver < 27 ? 12 : 14); case MODE_ALPHANUMERIC: return (ver < 10 ? 9 : ver < 27 ? 11 : 13); case MODE_OCTET: return (ver < 10 ? 8 : 16); case MODE_KANJI: return (ver < 10 ? 8 : ver < 27 ? 10 : 12); } }; // returns the maximum length of data possible in given configuration. var getmaxdatalen = function (ver, mode, ecclevel) { var nbits = ndatabits(ver, ecclevel) - 4 - ndatalenbits(ver, mode); // 4 for mode bits switch (mode) { case MODE_NUMERIC: return ((nbits / 10) | 0) * 3 + (nbits % 10 < 4 ? 0 : nbits % 10 < 7 ? 1 : 2); case MODE_ALPHANUMERIC: return ((nbits / 11) | 0) * 2 + (nbits % 11 < 6 ? 0 : 1); case MODE_OCTET: return (nbits / 8) | 0; case MODE_KANJI: return (nbits / 13) | 0; } }; // checks if the given data can be encoded in given mode, and returns // the converted data for the further processing if possible. otherwise // returns null. // // this function does not check the length of data; it is a duty of // encode function below (as it depends on the version and ECC level too). var validatedata = function (mode, data) { switch (mode) { case MODE_NUMERIC: if (!data.match(NUMERIC_REGEXP)) return null; return data; case MODE_ALPHANUMERIC: if (!data.match(ALPHANUMERIC_REGEXP)) return null; return data.toUpperCase(); case MODE_OCTET: if (typeof data === 'string') { // encode as utf-8 string var newdata = []; for (var i = 0; i < data.length; ++i) { var ch = data.charCodeAt(i); if (ch < 0x80) { newdata.push(ch); } else if (ch < 0x800) { newdata.push(0xc0 | (ch >> 6), 0x80 | (ch & 0x3f)); } else if (ch < 0x10000) { newdata.push(0xe0 | (ch >> 12), 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); } else { newdata.push(0xf0 | (ch >> 18), 0x80 | ((ch >> 12) & 0x3f), 0x80 | ((ch >> 6) & 0x3f), 0x80 | (ch & 0x3f)); } } return newdata; } else { return data; } } }; // returns the code words (sans ECC bits) for given data and configurations. // requires data to be preprocessed by validatedata. no length check is // performed, and everything has to be checked before calling this function. var encode = function (ver, mode, data, maxbuflen) { var buf = []; var bits = 0, remaining = 8; var datalen = data.length; // this function is intentionally no-op when n=0. var pack = function (x, n) { if (n >= remaining) { buf.push(bits | (x >> (n -= remaining))); while (n >= 8) buf.push((x >> (n -= 8)) & 255); bits = 0; remaining = 8; } if (n > 0) bits |= (x & ((1 << n) - 1)) << (remaining -= n); }; var nlenbits = ndatalenbits(ver, mode); pack(mode, 4); pack(datalen, nlenbits); switch (mode) { case MODE_NUMERIC: for (var i = 2; i < datalen; i += 3) { pack(parseInt(data.substring(i - 2, i + 1), 10), 10); } pack(parseInt(data.substring(i - 2), 10), [0, 4, 7][datalen % 3]); break; case MODE_ALPHANUMERIC: for (var i = 1; i < datalen; i += 2) { pack(ALPHANUMERIC_MAP[data.charAt(i - 1)] * 45 + ALPHANUMERIC_MAP[data.charAt(i)], 11); } if (datalen % 2 == 1) { pack(ALPHANUMERIC_MAP[data.charAt(i - 1)], 6); } break; case MODE_OCTET: for (var i = 0; i < datalen; ++i) { pack(data[i], 8); } break; } // final bits. it is possible that adding terminator causes the buffer // to overflow, but then the buffer truncated to the maximum size will // be valid as the truncated terminator mode bits and padding is // identical in appearance (cf. JIS X 0510:2004 sec 8.4.8). pack(MODE_TERMINATOR, 4); if (remaining < 8) buf.push(bits); // the padding to fill up the remaining space. we should not add any // words when the overflow already occurred. while (buf.length + 1 < maxbuflen) buf.push(0xec, 0x11); if (buf.length < maxbuflen) buf.push(0xec); return buf; }; // calculates ECC code words for given code words and generator polynomial. // // this is quite similar to CRC calculation as both Reed-Solomon and CRC use // the certain kind of cyclic codes, which is effectively the division of // zero-augumented polynomial by the generator polynomial. the only difference // is that Reed-Solomon uses GF(2^8), instead of CRC's GF(2), and Reed-Solomon // uses the different generator polynomial than CRC's. var calculateecc = function (poly, genpoly) { var modulus = poly.slice(0); var polylen = poly.length, genpolylen = genpoly.length; for (var i = 0; i < genpolylen; ++i) modulus.push(0); for (var i = 0; i < polylen; ) { var quotient = GF256_INVMAP[modulus[i++]]; if (quotient >= 0) { for (var j = 0; j < genpolylen; ++j) { modulus[i + j] ^= GF256_MAP[(quotient + genpoly[j]) % 255]; } } } return modulus.slice(polylen); }; // auguments ECC code words to given code words. the resulting words are // ready to be encoded in the matrix. // // the much of actual augumenting procedure follows JIS X 0510:2004 sec 8.7. // the code is simplified using the fact that the size of each code & ECC // blocks is almost same; for example, when we have 4 blocks and 46 data words // the number of code words in those blocks are 11, 11, 12, 12 respectively. var augumenteccs = function (poly, nblocks, genpoly) { var subsizes = []; var subsize = (poly.length / nblocks) | 0, subsize0 = 0; var pivot = nblocks - poly.length % nblocks; for (var i = 0; i < pivot; ++i) { subsizes.push(subsize0); subsize0 += subsize; } for (var i = pivot; i < nblocks; ++i) { subsizes.push(subsize0); subsize0 += subsize + 1; } subsizes.push(subsize0); var eccs = []; for (var i = 0; i < nblocks; ++i) { eccs.push(calculateecc(poly.slice(subsizes[i], subsizes[i + 1]), genpoly)); } var result = []; var nitemsperblock = (poly.length / nblocks) | 0; for (var i = 0; i < nitemsperblock; ++i) { for (var j = 0; j < nblocks; ++j) { result.push(poly[subsizes[j] + i]); } } for (var j = pivot; j < nblocks; ++j) { result.push(poly[subsizes[j + 1] - 1]); } for (var i = 0; i < genpoly.length; ++i) { for (var j = 0; j < nblocks; ++j) { result.push(eccs[j][i]); } } return result; }; // auguments BCH(p+q,q) code to the polynomial over GF(2), given the proper // genpoly. the both input and output are in binary numbers, and unlike // calculateecc genpoly should include the 1 bit for the highest degree. // // actual polynomials used for this procedure are as follows: // - p=10, q=5, genpoly=x^10+x^8+x^5+x^4+x^2+x+1 (JIS X 0510:2004 Appendix C) // - p=18, q=6, genpoly=x^12+x^11+x^10+x^9+x^8+x^5+x^2+1 (ibid. Appendix D) var augumentbch = function (poly, p, genpoly, q) { var modulus = poly << q; for (var i = p - 1; i >= 0; --i) { if ((modulus >> (q + i)) & 1) modulus ^= genpoly << i; } return (poly << q) | modulus; }; // creates the base matrix for given version. it returns two matrices, one of // them is the actual one and the another represents the "reserved" portion // (e.g. finder and timing patterns) of the matrix. // // some entries in the matrix may be undefined, rather than 0 or 1. this is // intentional (no initialization needed!), and putdata below will fill // the remaining ones. var makebasematrix = function (ver) { var v = VERSIONS[ver], n = getsizebyver(ver); var matrix = [], reserved = []; for (var i = 0; i < n; ++i) { matrix.push([]); reserved.push([]); } var blit = function (y, x, h, w, bits) { for (var i = 0; i < h; ++i) { for (var j = 0; j < w; ++j) { matrix[y + i][x + j] = (bits[i] >> j) & 1; reserved[y + i][x + j] = 1; } } }; // finder patterns and a part of timing patterns // will also mark the format information area (not yet written) as reserved. blit(0, 0, 9, 9, [0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x17f, 0x00, 0x40]); blit(n - 8, 0, 8, 9, [0x100, 0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x7f]); blit(0, n - 8, 9, 8, [0xfe, 0x82, 0xba, 0xba, 0xba, 0x82, 0xfe, 0x00, 0x00]); // the rest of timing patterns for (var i = 9; i < n - 8; ++i) { matrix[6][i] = matrix[i][6] = ~i & 1; reserved[6][i] = reserved[i][6] = 1; } // alignment patterns var aligns = v[2], m = aligns.length; for (var i = 0; i < m; ++i) { var minj = (i === 0 || i === m - 1 ? 1 : 0), maxj = (i === 0 ? m - 1 : m); for (var j = minj; j < maxj; ++j) { blit(aligns[i], aligns[j], 5, 5, [0x1f, 0x11, 0x15, 0x11, 0x1f]); } } // version information if (needsverinfo(ver)) { var code = augumentbch(ver, 6, 0x1f25, 12); var k = 0; for (var i = 0; i < 6; ++i) { for (var j = 0; j < 3; ++j) { matrix[i][(n - 11) + j] = matrix[(n - 11) + j][i] = (code >> k++) & 1; reserved[i][(n - 11) + j] = reserved[(n - 11) + j][i] = 1; } } } return {matrix: matrix, reserved: reserved}; }; // fills the data portion (i.e. unmarked in reserved) of the matrix with given // code words. the size of code words should be no more than available bits, // and remaining bits are padded to 0 (cf. JIS X 0510:2004 sec 8.7.3). var putdata = function (matrix, reserved, buf) { var n = matrix.length; var k = 0, dir = -1; for (var i = n - 1; i >= 0; i -= 2) { if (i == 6) --i; // skip the entire timing pattern column var jj = (dir < 0 ? n - 1 : 0); for (var j = 0; j < n; ++j) { for (var ii = i; ii > i - 2; --ii) { if (!reserved[jj][ii]) { // may overflow, but (undefined >> x) // is 0 so it will auto-pad to zero. matrix[jj][ii] = (buf[k >> 3] >> (~k & 7)) & 1; ++k; } } jj += dir; } dir = -dir; } return matrix; }; // XOR-masks the data portion of the matrix. repeating the call with the same // arguments will revert the prior call (convenient in the matrix evaluation). var maskdata = function (matrix, reserved, mask) { var maskf = MASKFUNCS[mask]; var n = matrix.length; for (var i = 0; i < n; ++i) { for (var j = 0; j < n; ++j) { if (!reserved[i][j]) matrix[i][j] ^= maskf(i, j); } } return matrix; }; // puts the format information. var putformatinfo = function (matrix, reserved, ecclevel, mask) { var n = matrix.length; var code = augumentbch((ecclevel << 3) | mask, 5, 0x537, 10) ^ 0x5412; for (var i = 0; i < 15; ++i) { var r = [0, 1, 2, 3, 4, 5, 7, 8, n - 7, n - 6, n - 5, n - 4, n - 3, n - 2, n - 1][i]; var c = [n - 1, n - 2, n - 3, n - 4, n - 5, n - 6, n - 7, n - 8, 7, 5, 4, 3, 2, 1, 0][i]; matrix[r][8] = matrix[8][c] = (code >> i) & 1; // we don't have to mark those bits reserved; always done // in makebasematrix above. } return matrix; }; // evaluates the resulting matrix and returns the score (lower is better). // (cf. JIS X 0510:2004 sec 8.8.2) // // the evaluation procedure tries to avoid the problematic patterns naturally // occuring from the original matrix. for example, it penaltizes the patterns // which just look like the finder pattern which will confuse the decoder. // we choose the mask which results in the lowest score among 8 possible ones. // // note: zxing seems to use the same procedure and in many cases its choice // agrees to ours, but sometimes it does not. practically it doesn't matter. var evaluatematrix = function (matrix) { // N1+(k-5) points for each consecutive row of k same-colored modules, // where k >= 5. no overlapping row counts. var PENALTY_CONSECUTIVE = 3; // N2 points for each 2x2 block of same-colored modules. // overlapping block does count. var PENALTY_TWOBYTWO = 3; // N3 points for each pattern with >4W:1B:1W:3B:1W:1B or // 1B:1W:3B:1W:1B:>4W, or their multiples (e.g. highly unlikely, // but 13W:3B:3W:9B:3W:3B counts). var PENALTY_FINDERLIKE = 40; // N4*k points for every (5*k)% deviation from 50% black density. // i.e. k=1 for 55~60% and 40~45%, k=2 for 60~65% and 35~40%, etc. var PENALTY_DENSITY = 10; var evaluategroup = function (groups) { // assumes [W,B,W,B,W,...,B,W] var score = 0; for (var i = 0; i < groups.length; ++i) { if (groups[i] >= 5) score += PENALTY_CONSECUTIVE + (groups[i] - 5); } for (var i = 5; i < groups.length; i += 2) { var p = groups[i]; if (groups[i - 1] == p && groups[i - 2] == 3 * p && groups[i - 3] == p && groups[i - 4] == p && (groups[i - 5] >= 4 * p || groups[i + 1] >= 4 * p)) { // this part differs from zxing... score += PENALTY_FINDERLIKE; } } return score; }; var n = matrix.length; var score = 0, nblacks = 0; for (var i = 0; i < n; ++i) { var row = matrix[i]; var groups; // evaluate the current row groups = [0]; // the first empty group of white for (var j = 0; j < n; ) { var k; for (k = 0; j < n && row[j]; ++k) ++j; groups.push(k); for (k = 0; j < n && !row[j]; ++k) ++j; groups.push(k); } score += evaluategroup(groups); // evaluate the current column groups = [0]; for (var j = 0; j < n; ) { var k; for (k = 0; j < n && matrix[j][i]; ++k) ++j; groups.push(k); for (k = 0; j < n && !matrix[j][i]; ++k) ++j; groups.push(k); } score += evaluategroup(groups); // check the 2x2 box and calculate the density var nextrow = matrix[i + 1] || []; nblacks += row[0]; for (var j = 1; j < n; ++j) { var p = row[j]; nblacks += p; // at least comparison with next row should be strict... if (row[j - 1] == p && nextrow[j] === p && nextrow[j - 1] === p) { score += PENALTY_TWOBYTWO; } } } score += PENALTY_DENSITY * ((Math.abs(nblacks / n / n - 0.5) / 0.05) | 0); return score; }; // returns the fully encoded QR code matrix which contains given data. // it also chooses the best mask automatically when mask is -1. var generate = function (data, ver, mode, ecclevel, mask) { var v = VERSIONS[ver]; var buf = encode(ver, mode, data, ndatabits(ver, ecclevel) >> 3); buf = augumenteccs(buf, v[1][ecclevel], GF256_GENPOLY[v[0][ecclevel]]); var result = makebasematrix(ver); var matrix = result.matrix, reserved = result.reserved; putdata(matrix, reserved, buf); if (mask < 0) { // find the best mask maskdata(matrix, reserved, 0); putformatinfo(matrix, reserved, ecclevel, 0); var bestmask = 0, bestscore = evaluatematrix(matrix); maskdata(matrix, reserved, 0); for (mask = 1; mask < 8; ++mask) { maskdata(matrix, reserved, mask); putformatinfo(matrix, reserved, ecclevel, mask); var score = evaluatematrix(matrix); if (bestscore > score) { bestscore = score; bestmask = mask; } maskdata(matrix, reserved, mask); } mask = bestmask; } maskdata(matrix, reserved, mask); putformatinfo(matrix, reserved, ecclevel, mask); return matrix; }; // the public interface is trivial; the options available are as follows: // // - version: an integer in [1,40]. when omitted (or -1) the smallest possible // version is chosen. // - mode: one of 'numeric', 'alphanumeric', 'octet'. when omitted the smallest // possible mode is chosen. // - eccLevel: one of 'L', 'M', 'Q', 'H'. defaults to 'L'. // - mask: an integer in [0,7]. when omitted (or -1) the best mask is chosen. // function generateFrame(data, options) { var MODES = {'numeric': MODE_NUMERIC, 'alphanumeric': MODE_ALPHANUMERIC, 'octet': MODE_OCTET}; var ECCLEVELS = {'L': ECCLEVEL_L, 'M': ECCLEVEL_M, 'Q': ECCLEVEL_Q, 'H': ECCLEVEL_H}; options = options || {}; var ver = options.version || -1; var ecclevel = ECCLEVELS[(options.eccLevel || 'L').toUpperCase()]; var mode = options.mode ? MODES[options.mode.toLowerCase()] : -1; var mask = 'mask' in options ? options.mask : -1; if (mode < 0) { if (typeof data === 'string') { if (data.match(NUMERIC_REGEXP)) { mode = MODE_NUMERIC; } else if (data.match(ALPHANUMERIC_OUT_REGEXP)) { // while encode supports case-insensitive encoding, we restrict the data to be uppercased when auto-selecting the mode. mode = MODE_ALPHANUMERIC; } else { mode = MODE_OCTET; } } else { mode = MODE_OCTET; } } else if (!(mode == MODE_NUMERIC || mode == MODE_ALPHANUMERIC || mode == MODE_OCTET)) { throw 'invalid or unsupported mode'; } data = validatedata(mode, data); if (data === null) throw 'invalid data format'; if (ecclevel < 0 || ecclevel > 3) throw 'invalid ECC level'; if (ver < 0) { for (ver = 1; ver <= 40; ++ver) { if (data.length <= getmaxdatalen(ver, mode, ecclevel)) break; } if (ver > 40) throw 'too large data for the Qr format'; } else if (ver < 1 || ver > 40) { throw 'invalid Qr version! should be between 1 and 40'; } if (mask != -1 && (mask < 0 || mask > 8)) throw 'invalid mask'; //console.log('version:', ver, 'mode:', mode, 'ECC:', ecclevel, 'mask:', mask ) return generate(data, ver, mode, ecclevel, mask); } // options // - modulesize: a number. this is a size of each modules in pixels, and // defaults to 5px. // - margin: a number. this is a size of margin in *modules*, and defaults to // 4 (white modules). the specficiation mandates the margin no less than 4 // modules, so it is better not to alter this value unless you know what // you're doing. function buildCanvas(data, options) { var canvas = []; var background = options.background || '#fff'; var foreground = options.foreground || '#000'; var padding = options.padding || 0; //var margin = options.margin || 4; var matrix = generateFrame(data, options); var n = matrix.length; var modSize = Math.floor(options.fit ? options.fit / n : 5); var size = (n * modSize) + (modSize * padding * 2); var paddingXY = modSize * padding; canvas.push({ type: 'rect', x: 0, y: 0, w: size, h: size, lineWidth: 0, color: background }); for (var i = 0; i < n; ++i) { for (var j = 0; j < n; ++j) { if (matrix[i][j]) { canvas.push({ type: 'rect', x: modSize * j + paddingXY, y: modSize * i + paddingXY, w: modSize, h: modSize, lineWidth: 0, color: foreground }); } } } return { canvas: canvas, size: size }; } function measure(node) { var cd = buildCanvas(node.qr, node); node._canvas = cd.canvas; node._width = node._height = node._minWidth = node._maxWidth = node._minHeight = node._maxHeight = cd.size; return node; } module.exports = { measure: measure };